• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南京市老年体检人群空腹血糖轨迹与新发心血管病的关联

陈荃 杜金玲 洪忻

陈荃, 杜金玲, 洪忻. 南京市老年体检人群空腹血糖轨迹与新发心血管病的关联[J]. 中华疾病控制杂志, 2024, 28(3): 277-283. doi: 10.16462/j.cnki.zhjbkz.2024.03.005
引用本文: 陈荃, 杜金玲, 洪忻. 南京市老年体检人群空腹血糖轨迹与新发心血管病的关联[J]. 中华疾病控制杂志, 2024, 28(3): 277-283. doi: 10.16462/j.cnki.zhjbkz.2024.03.005
CHEN Quan, DU Jinling, HONG Xin. Association between fasting blood glucose trajectories and new-onset cardiovascular diseases in the elderly health check-up population in Nanjing[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(3): 277-283. doi: 10.16462/j.cnki.zhjbkz.2024.03.005
Citation: CHEN Quan, DU Jinling, HONG Xin. Association between fasting blood glucose trajectories and new-onset cardiovascular diseases in the elderly health check-up population in Nanjing[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2024, 28(3): 277-283. doi: 10.16462/j.cnki.zhjbkz.2024.03.005

南京市老年体检人群空腹血糖轨迹与新发心血管病的关联

doi: 10.16462/j.cnki.zhjbkz.2024.03.005
基金项目: 

江苏省卫生健康委2022年度医学科研项目 M2022028

详细信息
    通讯作者:

    洪忻,E-mail: nj_hongxin@126.com

  • 中图分类号: R181.1

Association between fasting blood glucose trajectories and new-onset cardiovascular diseases in the elderly health check-up population in Nanjing

Funds: 

Jiangsu Provincial Health and Health Commission 2022 Medical Research Projects M2022028

More Information
  • 摘要:   目的  探讨南京市老年人群(≥65岁)空腹血糖(fasting plasma glucose,FPG)轨迹和新发心血管病(cardiovascular disease,CVD)结局事件的关联。  方法  从南京市老年健康体检人群中选取符合纳入标准者作为研究对象,共计7 079人纳入研究队列,采用群组化轨迹模型(group-based trajectory modeling,GBTM)构建2018―2020年FPG指标(FPG取其对数使其服从正态分布)随年份变化的轨迹并分组,随访该人群2021年CVD的发病情况,应用Cox回归模型分析不同轨迹组和新发CVD的关联。  结果  该人群的FPG轨迹最终分为低水平组(5 635,79.6%)、中水平组(1 201,17.0%)和高水平组(243,3.4%)。随访期间共有CVD结局事件70例,其中低水平组、中水平组和高水平组新发病例数分别占该组人数的0.83%、1.42%、2.47%,发病率随着FPG轨迹水平升高而增加(趋势χ2 =8.750, P=0.003),差异有统计学意义(χ2 =9.050, P=0.011)。Cox回归模型分析结果显示,高水平组的CVD发病风险是低水平组的2.96倍(95% CI:1.27~6.92)。  结论  老年人群较高水平的FPG轨迹和较高的CVD发病风险相关,FPG值偏高会增加CVD的发病风险,应及时干预,以实现早期预防CVD的目的。
  • 图  1  研究对象纳入排除的流程图

    Figure  1.  Flowchart for inclusion and exclusion of participants

    图  2  3组FPG轨迹的拟合结果

    Figure  2.  Three groups of FPG trajectory fitting results

    表  1  研究对象的基线资料特征

    Table  1.   Characteristics of baseline information on the participants

    变量Variable 总人群
    Total population
    (n=7 079)
    变量Variable 总人群
    Total population
    (n=7 079)
    年龄/岁Age/years 71.07±4.88 吸烟Smoking 1 795(25.36)
    年龄组/岁Age group/years 饮酒Drinking 1 833(25.89)
      65-79 6 571(92.82) 体育锻炼Physical activity 794(11.22)
      ≥80 508(7.18) BMI/(kg·m-2) 24.71±3.44
    性别Gender WC/cm 82.89±8.78
      男Male 3 314(46.81) SBP/mmHg 144.40±20.03
      女Female 3 765(53.19) DBP/mmHg 80.99±10.65
    婚姻状况Marital status FPG/(mmol·L-1) 5.84±1.39
      已婚Married 5 635(79.60) TC/(mmol·L-1) 5.06±0.97
      未婚,离异或丧偶Divorced, widowed, or not married 1 444(20.40) TG/(mmol·L-1) 1.43±0.99
    文化程度Education LDL-C/(mmol·L-1) 1.54±0.44
      高中以下High school below 7 008(99.00) HDL-C/(mmol·L-1) 2.80±0.75
      高中及以上High school and above 71(1.00)
    注:WC,腰围;SBP,收缩压;DBP,舒张压;TC,总胆固醇;TG,三酰甘油;LDL-C,低密度脂蛋白胆固醇;HDL-C,高密度脂蛋白胆固醇。
    ①以人数(占比/%)或x±s表示。
    Note: WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol.
    ①Number of people (proportion/%) or x±s.
    下载: 导出CSV

    表  2  空腹血糖指标对数值轨迹模型分组依据

    Table  2.   Basis for grouping of fasting blood glucose indicators into numerical trajectory models

    分组数量Number of subgroups BIC 2△(BICij) 分组数量Number of subgroups BIC 2△(BICij)
    1 21 456.37 (基线)(Baseline) 4 26 975.65 828.82
    2 25 659.30 8 405.86 5 27 285.32 619.34
    3 26 561.24 1 803.88 6 27 597.30 623.96
    注:BIC,贝叶斯信息标准;2△(BICij),2个比较模型BIC差值的2倍,近似等于贝叶斯因子对数值。
    Note: BIC, Bayesian information criterion; 2△(BICij), the value is approximately equal to 2 times of the difference of BIC between the 2 compared models, approximately equal to the value of Bayesian factor logarithm.
    下载: 导出CSV

    表  3  不同轨迹组的相关参数

    Table  3.   Relevant parameters for different trajectory groups

    分组
    Groups
    参数
    Parameters
    估计值
    Estimate
    sx t值value P值value
    低水平组Low-level group 截距Intercept 0.741 0.003 214.445 < 0.001
    线性项Linear -0.017 0.004 -4.268 < 0.001
    二次项Quadratic 0.004 0.001 3.974 < 0.001
    中水平组Middle-level group 截距Intercept 0.871 0.008 103.662 < 0.001
    线性项Linear -0.037 0.009 -4.079 < 0.001
    二次项Quadratic 0.012 0.002 5.167 < 0.001
    高水平组High-level group 截距Intercept 0.892 0.020 44.525 < 0.001
    线性项Linear 0.120 0.025 4.752 < 0.001
    二次项Quadratic -0.029 0.006 -4.584 < 0.001
    下载: 导出CSV

    表  4  不同空腹血糖轨迹组研究对象的基线资料

    Table  4.   Baseline information of participants among different fasting blood glucose trajectory groups

    变量Variable 空腹血糖轨迹分组
    Fasting blood glucose trajectory groups
    χ2/F值value P
    value
    低水平组
    Low-level group
    中水平组
    Medium-level group
    高水平组
    High-level group
    人数Number of population 5 635(79.60) 1 201(16.97) 243(3.43)
    年龄/岁Age/years 71.11±4.94 70.86±4.65 71.23±4.58 1.408 0.245
    性别Gender 53.798 < 0.001
      女性Female 2 762(49.02) 461(38.38) 91(37.45)
      男性Male 2 873(50.98) 740(61.62) 152(62.55)
    婚姻状况Marital status 9.277 0.010
      已婚Married 4 527(80.34) 920(76.60) 188(77.37)
      未婚,离异或丧偶Divorced, widowed, or not married 1 108(19.66) 281(23.40) 55(22.63)
    文化程度Education 4.329 0.363
      高中以下High school below 5 582(99.06) 1 186(98.75) 240(98.77)
      高中及以上High school and above 53(0.94) 15(1.25) 3(1.23)
    吸烟Smoking 1 533(27.21) 219(18.23) 43(17.70) 51.680 < 0.001
    饮酒Drinking 1 530(27.15) 260(21.65) 47(19.34) 22.058 < 0.001
    体育锻炼Physical activity 593(10.52) 171(14.24) 30(12.35) 14.040 0.001
    BMI/(kg·m-2) 24.41±3.40 25.87±3.31 25.92±3.62 108.152 < 0.001
    WC/cm 82.07±8.68 86.06±8.99 86.47±9.29 123.369 < 0.001
    SBP/mmHg 143.49±20.11 148.05±19.32 146.63±22.20 27.199 < 0.001
    DBP/mmHg 80.71±10.93 81.86±9.98 82.72±10.74 8.969 < 0.001
    FPG/(mmol·L-1) 5.49±8.45 7.18±1.30 9.99±2.99 60.948 < 0.001
    TC/(mmol·L-1) 5.35±10.97 5.65±19.30 5.27±1.07 0.290 0.748
    TG/(mmol·L-1) 1.37±1.24 1.73±1.31 1.98±2.41 58.231 < 0.001
    LDL-C/(mmol·L-1) 2.87±4.99 2.86±0.75 2.94±0.80 0.030 0.970
    HDL-C/(mmol·L-1) 1.66±4.11 1.44±0.42 1.45±0.37 1.997 0.136
    新发CVD病例New cases of CVD 47(0.83) 17(1.42) 6(2.47) 9.050 0.011
    注:WC,腰围;SBP,收缩压;DBP,舒张压;TC,总胆固醇;TG,三酰甘油;LDL-C,低密度脂蛋白胆固醇;HDL-C,高密度脂蛋白胆固醇; CVD, 心血管病。
    ①以人数(占比/%)或x±s表示。
    Note: WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; CVD, cardiovascular disease.
    ①Number of people (proportion/%) or x±s.
    下载: 导出CSV

    表  5  不同空腹血糖轨迹组发生心血管病的Cox回归分析

    Table  5.   Cox regression analysis of the occurrence of cardiovascular disease among different fasting blood glucose trajectory groups

    模型Model 类别Category β
    value
    sx Wald χ2
    值value
    HR值value
    (95% CI)
    P
    value
    模型1 Model 1 低水平组Low-level group 1.000
    中水平组Medium-level group 0.529 0.283 3.492 1.697(0.975~2.955) 0.062
    高水平组High-level group 1.085 0.434 6.267 2.960(1.266~6.924) 0.012
    模型2 Model 2 低水平组Low-level group 1.000
    中水平组Medium-level group 0.488 0.284 2.944 1.629(0.933~2.845) 0.086
    高水平组High-level group 1.020 0.434 5.516 2.774(1.184~6.501) 0.019
    模型3 Model 3 低水平组Low-level group 1.000
    中水平组Medium-level group 0.430 0.291 2.178 1.537(0.868~2.722) 0.140
    高水平组High-level group 0.914 0.443 4.262 2.495(1.047~5.945) 0.039
    注:模型1未经调整;模型2在模型1的基础上调整了年龄和性别;模型3在模型2的基础上调整了基线BMI、腰围、收缩压、舒张压、总胆固醇、三酰甘油、低密度脂蛋白胆固醇和高密度脂蛋白胆固醇指标平均值。
    Note: Model 1 unadjusted; model 2 adjusting for age and gender based on model 1; Model 3 adjusting for baseline mean BMI, waist circumference, systolic blood pressure, diastolic blood pressure, total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol.
    下载: 导出CSV
  • [1] 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220. DOI: 10.3969/j.issn.1000-3614.2019.03.001.

    Hu SS, Gao RL, Liu LS, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chin Circ J, 2019, 34(3): 209-220. DOI: 10.3969/j.issn.1000-3614.2019.03.001.
    [2] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578. DOI: 10.3969/j.issn.1000-3614.2022.06.001.

    The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Summary of china cardiovascular health and disease report 2021[J]. Chin Circ J, 2022, 37(6): 553-578. DOI: 10.3969/j.issn.1000-3614.2022.06.001.
    [3] GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
    [4] Zhao D, Liu J, Wang M, et al. Epidemiology of cardiovascular disease in China: current features and implications[J]. Nat Rev Cardiol, 2019, 16(4): 203-212. DOI: 10.1038/s41569-018-0119-4.
    [5] Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study[J]. J Am Coll Cardiol, 2020, 76(25): 2982-3021. DOI: 10.1016/j.jacc.2020.11.010.
    [6] Teo KK, Rafiq T. Cardiovascular risk factors and prevention: a perspective from developing countries[J]. Can J Cardiol, 2021, 37(5): 733-743. DOI: 10.1016/j.cjca.2021.02.009.
    [7] Liu S, Li Y, Zeng X, et al. Burden of cardiovascular diseases in China, 1990-2016: findings from the 2016 global burden of disease study[J]. JAMA Cardiol, 2019, 4(4): 342-352. DOI: 10.1001/jamacardio.2019.0295.
    [8] Goldsborough E 3rd, Osuji N, Blaha MJ. Assessment of cardiovascular disease risk: a 2022 update[J]. Endocrinol Metab Clin North Am, 2022, 51(3): 483-509. DOI: 10.1016/j.ecl.2022.02.005.
    [9] Han C, Liu F, Yang X, et al. Ideal cardiovascular health and incidence of atherosclerotic cardiovascular disease among Chinese adults: the China-PAR project[J]. Sci China Life Sci, 2018, 61(5): 504-514. DOI: 10.1007/s11427-018-9281-6.
    [10] 北京高血压防治协会, 北京糖尿病防治协会, 北京慢性病防治与健康教育研究会, 等. 基层心血管病综合管理实践指南2020[J]. 中国医学前沿杂志(电子版), 2020, 12(8): 1-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQY202008002.htm

    Beijing Hypertension Association, Beijing Diabetes Prevention and Treatment Association, Beijing Research for Chronic Diseases Control and Health Education, et al. Practice guidelines for comprehensive management of primary cardiovascular disease 2020[J]. Chinese Journal of Frontiers in Medicine (Electronic Version), 2020, 12(8): 1-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YXQY202008002.htm
    [11] Wang L, Peng W, Zhao Z, et al. Prevalence and treatment of diabetes in China, 2013-2018[J]. JAMA, 2021, 326(24): 2498-2506. DOI: 10.1001/jama.2021.22208.
    [12] Zang E, Max JT. Bayesian estimation and model selection in group-based trajectory models[J]. Psychol Methods, 2022, 27(3): 347-372. DOI: 10.1037/met0000359.
    [13] Benjamin EJ, Virani SS, Callaway CW, et al. American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics-2018 update: a report from the American heart association[J]. Circulation, 2018, 137: e67-e492.
    [14] 中国预防医学科学院, 中国吸烟与健康协会, 卫生部疾病控制司, 等. 1996年全国吸烟行为的流行病学调查[M]. 北京: 中国科学技术出版社, 1997: 155-158.
    [15] Jones BL, Nagin D, Roeder K. A SAS procedure based on mixture models for estimating developmental trajectories[J]. Sociol Methods Res, 2001, 29(3): 374-393. DOI: 10.1177/0049124101029003005.
    [16] Nina V, Mendes AG, Sevdalis N, et al. Applicability of the disruptions in surgery index in the cardiovascular management scenarios - a marker for developing functionally efficient teams[J]. Braz J Cardiovasc Surg, 2021, 36(4): 445-452. DOI: 10.21470/1678-9741-2020-0685.
    [17] 徐文华, 刘晋, 王增武, 等. 江苏省成年人高血压患病现状及影响因素分析[J]. 中国心血管病研究, 2020, 18(9): 775-782. DOI: 10.3969/j.issn.1672-5301.2020.09.002.

    Xu WH, Liu J, Wang ZW, et al. Analysis of the current prevalence and influencing factors of hypertension among adults in Jiangsu Province[J]. Chin J Cardiovasc Res, 2020, 18(9): 775-782. DOI: 10.3969/j.issn.1672-5301.2020.09.002.
    [18] Falkner B, Gidding S. Life-course implications of pediatric risk factors for cardiovascular disease[J]. Can J Cardiol, 2021, 37(5): 766-775. DOI: 10.1016/j.cjca.2021.02.001.
    [19] Francula-Zaninovic S, Nola IA. Management of measurable variable cardiovascular disease' risk factors[J]. Curr Cardiol Rev, 2018, 14(3): 153-163. DOI: 10.2174/1573403X14666180222102312.
    [20] Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the american college of cardiology/american heart association task force on clinical practice guidelines[J]. Circulation, 2019, 140(11): e596-e646. DOI: 10.1161/CIR.0000000000000678.
    [21] Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American diabetes association: national cross sectional study[J]. BMJ, 2020, 369: m997. DOI: 10.1136/bmj.m997.
    [22] 赵越, 张梅, 李伟, 等. 血糖控制不佳的2型糖尿病患者心血管病风险分析[J]. 心血管病学进展, 2020, 41(5): 551-555. DOI: 10.16806/j.cnki.issn.1004-3934.2020.05.026.

    Zhao Y, Zhang M, Li W, et al. Analysis of cardiovascular disease risk in patients with type 2 diabetes mellitus with poor glycemic control[J]. Adv Cardiovasc Dis, 2020, 41(5): 551-555. DOI: 10.16806/j.cnki.issn.1004-3934.2020.05.026.
    [23] Xu Y, Bi Y, Li M, et al. Significant coronary stenosis in asymptomatic Chinese with different glycemic status[J]. Diabetes Care, 2013, 36(6): 1687-1694. DOI: 10.2337/dc12-0977.
    [24] 冯国双, 于石成, 刘世炜. 轨迹分析模型在追踪数据分析中的应用[J]. 中国预防医学杂志, 2014, 15(3): 292-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYC201403036.htm

    Feng GS, Yu SC, Liu SW. Application of trajectory analysis model in tracking data analysis[J]. Chin Prev Med, 2014, 15(3): 292-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYC201403036.htm
    [25] 雷芳, 宋桂荣, 刘启贵, 等. 潜变量增长混合模型在学龄儿童体质指数变化轨迹分析中的应用[J]. 中国卫生统计, 2021, 38(4): 519-522, 527. DOI: 10.3969/j.issn.1002-3674.2021.04.009.

    Lei F, Song GR, Liu QG, et al. Application of latent variable growth mixed model in the analysis of trajectory of change in body mass index of school-aged children[J]. Chinese Journal of Health Statistics, 2021, 38(4): 519-522, 527. DOI: 10.3969/j.issn.1002-3674.2021.04.009.
    [26] 喻嘉宏, 陈小娜, 郜艳晖, 等. 潜变量增长混合模型在医学研究中的应用[J]. 中国卫生统计, 2018, 35(4): 496-499. DOI: 10.3969/j.issn.1671-3710.2007.03.023.

    Yu JH, Chen XN, Gao YH, et al. Application of latent variable growth mixture model in medical research[J]. Chinese Journal of Health Statistics, 2018, 35(4): 496-499, DOI: 10.3969/j.issn.1671-3710.2007.03.023.
    [27] Kim BJ, Cho YJ, Hong KS, et al. Trajectory groups of 24-hour systolic blood pressure after acute ischemic stroke and recurrent vascular events[J]. Stroke, 2018, 49(8): 1836-1842. DOI: 10.1161/STROKEAHA.118.021117.
    [28] Lennon H, Kelly S, Sperrin M, et al. Framework to construct and interpret latent class trajectory modelling[J]. BMJ Open, 2018, 8(7): e020683. DOI: 10.1136/bmjopen-2017-020683.
    [29] 王燕逍翔, 白建军, 宇传华. 基于全球视角的中国心血管病疾病负担现状及趋势[J]. 公共卫生与预防医学, 2021, 32(6): 6-11. DOI: 10.3969/j.issn.1006-2483.2021.06.002.

    Wang YYX, Bai JJ, Yu CH. Current status and trends of cardiovascular disease burden in China based on a global perspective[J]. J Public Health Prev Med, 2021, 32(6): 6-11. DOI: 10.3969/j.issn.1006-2483.2021.06.002.
    [30] Teo KK, Rafiq T. Cardiovascular risk factors and prevention: a perspective from developing countries[J]. Can J Cardiol, 2021, 37(5): 733-743. DOI: 10.1016/j.cjca.2021.02.009.
    [31] Li JJ, Liu HH, Li S. Landscape of cardiometabolic risk factors in Chinese population: a narrative review[J]. Cardiovasc Diabetol, 2022, 21(1): 113. DOI: 10.1186/s12933-022-01551-3.
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  33
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2023-09-29
  • 网络出版日期:  2024-04-08
  • 刊出日期:  2024-03-10

目录

    /

    返回文章
    返回