-
摘要: 蜱是广泛分布于全球的专性吸血体外寄生虫,是世界上最主要的病媒生物之一,携带的病原体涵盖了细菌、病毒、螺旋体等。其中以蜱媒病毒为主要的虫媒病毒之一,给人类和动物的健康带来了极大的威胁。病毒宏基因组学是近年来基于宏基因组学兴起的病毒研究技术,它的出现为研究已知和未知病毒及其多样性提供了有力支持,给病毒研究带来了全新的技术手段和思路。本文综述了病毒宏基因组学在蜱媒病毒研究中的进展,以期为蜱媒病毒研究提供参考依据。Abstract: Ticks are specific blood-sucking ectoparasites which are widely distributed all over the world. They are one of the most important vector organism in the world, carrying pathogens including bacteria, viruses, spirochetes etc. Among them, tick-borne virus is the major arbovirus, which brings great burden to human and animal health. Virus metagenomics have been a virus research technology based on metagenomics in recent years. Its emergence provides strong support for the study of known and unknown viruses and their diversity, and brings new technical means and ideas to virus research. This paper reviews the research progress of viral metagenomics in tick-borne virus research to provide useful reference for tick-borne virus research.
-
Key words:
- Ticks /
- Tick-borne virus /
- Metagenomics /
- High-throughput sequencing
-
表 1 我国主要蜱媒病毒、媒介蜱种及其地理分布
Table 1. Major TBV, tick vector species and their geographical distribution in China
蜱媒病毒
Tick-borne virus主要媒介蜱种
Major vector tick species主要分布地区(省)
Main distribution areas (provinces)森林脑炎病毒
Tick-borne encephalitis virus全沟硬蜱、卵形硬蜱、嗜群血蜱、森林革蜱、微小扇头蜱
I.persulcatus, I.ovatus, Ha.concinna, D.silvarum, R.microplus黑龙江、吉林、新疆、内蒙古等地
Heilongjiang, Jilin, Xinjiang, Inner Mongolia, et al发热伴血小板减少综合征布尼亚病毒
Severe fever with thrombocytopenia syndrome Virus长角血蜱、微小扇头蜱
Ha.longicornis, R.microplus河南、湖北、安徽、山东、辽宁等地
Henan, Hubei, Anhui, Shandong, Liaoning, et al克里米亚-刚果出血热病毒
Crimean-Congo hemorrhagic fever virus亚洲璃眼蜱、小亚璃眼蜱、囊形扇头蜱
Hy.asiaticum, Hy.anatolicum, R.bursa新疆、云南等地
Xinjiang, Yunnan, et al阿龙山病毒
Alongshan virus全沟硬蜱
I.persulcatus内蒙古、黑龙江、吉林等地
Inner Mongolia, Heilongjiang, Jilin, et al松岭病毒
Songling virus全沟硬蜱、长角血蜱
I.persulcatus, Ha.longicornis黑龙江、吉林、内蒙古等地
Heilongjiang, Jilin, Inner Mongolia, et al -
[1] Shi J, Hu Z, Deng F, et al. Tick-borne viruses[J]. Virol Sin, 2018, 33(1): 21-43. DOI: 10.1007/s12250-018-0019-0. [2] Zhang YK, Zhang XY, Liu JZ. Ticks (Acari: Ixodoidea) in China: geographical distribution, host diversity, and specificity[J]. Arch Insect Biochem Physiol, 2019, 102(3): e21544. DOI: 10.1002/arch.21544. [3] 逯军, 潘翔. 蜱媒病毒-人畜动物的重要致病病原体[J]. 中国热带医学, 2020, 20(4): 309-319. DOI: 10.13604/j.cnki.46-1064/r.2020.04.04.Lu J, Pan X. Tick-borne viruses: the important pathogens of human beings and livestoccks[J]. China Tropical Medicine, 2020, 20(4): 309-319. DOI: 10.13604/j.cnki.46-1064/r.2020.04.04. [4] Holbrook MR. Kyasanur forest disease[J]. Antiviral Res, 2012, 96(3): 353-362. DOI: 10.1016/j.antiviral.2012.10.005. [5] Moya A, Holmes EC, González-Candelas F. The population genetics and evolutionary epidemiology of RNA viruses[J]. Nat Rev Microbiol, 2004, 2(4): 279-288. DOI: 10.1038/nrmicro863. [6] Holmes EC. What can we predict about viral evolution and emergence?[J]. Curr Opin Virol, 2013, 3(2): 180-184. DOI: 10.1016/j.coviro.2012.12.003. [7] Grabowski JM, Hill CA. A roadmap for tick-borne flavivirus research in the "Omics" era[J]. Front Cell Infect Microbiol, 2017, 7: 519. DOI: 10.3389/fcimb.2017.00519. [8] Ghosh S, Azhahianambi P, Yadav MP. Upcoming and future strategies of tick control: a review[J]. J Vector Borne Dis, 2007, 44(2): 79-89. [9] Wu XB, Na RH, Wei SS, et al. Distribution of tick-borne diseases in China[J]. Parasit Vectors, 2013, 6: 119. DOI: 10.1186/1756-3305-6-119. [10] 邵中军. 我国重要蜱传疾病及传播媒介研究概述[J]. 中华卫生杀虫药械, 2021, 27(4): 293-299. DOI: 10.19821/j.1671-2781.2021.04.001.Shao ZJ. Overview of serious tick-borne diseases and vector ticks in China[J]. Chin J Hyg Insect Equip, 2021, 27(4): 293-299. DOI: 10.19821/j.1671-2781.2021.04.001. [11] 雷新军, 孔金屏, 熊进峰, 等. 发热伴血小板减少综合征的流行病学特征及其与蜱密度消长的关系[J]. 上海预防医学, 2022, 34(7): 646-649. DOI: 10.19428/j.cnki.sjpm.2022.21771.Lei XJ, Kong JP, Xiong JF, et al. Epidemiological characteristics of severe fever with thrombocytopenia syndrome and association with tick density[J]. Shanghai Journal of Preventive Medicine, 2022, 34(7): 646-649. DOI: 10.19428/j.cnki.sjpm.2022.21771. [12] Xu L, Guo M, Hu B, et al. Tick virome diversity in Hubei Province, China, and the influence of host ecology[J]. Virus Evol, 2021, 7(2): veab089. DOI: 10.1093/ve/veab089. [13] Wille M, Harvey E, Shi M, et al. Sustained RNA virome diversity in Antarctic penguins and their ticks[J]. Isme J, 2020, 14(7): 1768-1782. DOI: 10.1038/s41396-020-0643-1. [14] Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing[J]. J Bacteriol, 1991, 173(14): 4371-4378. DOI: 10.1128/jb.173.14.4371-4378.1991. [15] Kumar R, Yadav G, Kuddus M, et al. Unlocking the microbial studies through computational approaches: how far have we reached[J]. Environ Sci Pollut Res Int, 2023, 30(17): 48929-48947. DOI: 10.1007/s11356-023-26220-0. [16] Breitbart M, Salamon P, Andresen B, et al. Genomic analysis of uncultured marine viral communities[J]. Proc Natl Acad Sci USA, 2002, 99(22): 14250-14255. DOI: 10.1073/pnas.202488399. [17] Anthony SJ, Epstein JH, Murray KA, et al. A strategy to estimate unknown viral diversity in mammals[J]. mBio, 2013, 4(5): e00598-13. DOI: 10.1128/mBio.00598-13. [18] Yadav BNS, Sharma P, Maurya S, et al. Metagenomics and metatranscriptomics as potential driving forces for the exploration of diversity and functions of micro-eukaryotes in soil[J]. 3 Biotech, 2023, 13(12): 423. DOI: 10.1007/s13205-023-03841-3. [19] Pérez-cobas AE, Gomez-valero L, Buchrieser C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses[J]. Microbial genomics, 2020, 6(8): mgen000409. DOI: 10.1099/mgen.0.000409. [20] Chaudhari HG, Prajapati S, Wardah ZH, et al. Decoding the microbial universe with metagenomics: a brief insight[J]. Front gene, 2023, 14: 1119740. DOI: 10.3389/fgene.2023.1119740. [21] Wang H, Ling Y, Shan T, et al. Gut virome of mammals and birds reveals high genetic diversity of the family Microviridae[J]. Virus Evol, 2019, 5(1): vez013. DOI: 10.1093/ve/vez013. [22] Halary S, Temmam S, Raoult D, et al. Viral metagenomics: are we missing the giants?[J]. Curr Opin Microbiol, 2016, 31: 34-43. DOI: 10.1016/j.mib.2016.01.005. [23] Rodino KG, Pritt BS. Novel applications of metagenomics for detection of tickborne pathogens[J]. Clin Chem, 2021, 68(1): 69-74. DOI: 10.1093/clinchem/hvab228. [24] Damian D, Maghembe R, Damas M, et al. Application of viral metagenomics for study of emerging and reemerging tick-borne viruses[J]. Vector Borne Zoonotic Dis, 2020, 20(8): 557-565. DOI: 10.1089/vbz.2019.2579. [25] Kieft K, Anantharaman K. Virus genomics: what is being overlooked[J]. Curr Opin Virol, 2022, 53: 101200. DOI: 10.1016/j.coviro.2022.101200. [26] Tokarz R, Williams SH, Sameroff S, et al. Virome analysis of amblyomma americanum, dermacentor variabilis, and ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses[J]. J Virol, 2014, 88(19): 11480-11492. DOI: 10.1128/jvi.01858-14. [27] Greninger AL, Chen EC, Sittler T, et al. A metagenomic analysis of pandemic influenza a (2009 H1N1) infection in patients from North America[J]. PLoS One, 2010, 5(10): e13381. DOI: 10.1371/journal.pone.0013381. [28] Zhang Y, Hu B, Agwanda B, et al. Viromes and surveys of RNA viruses in camel-derived ticks revealing transmission patterns of novel tick-borne viral pathogens in Kenya[J]. Emerg Microbes Infect, 2021, 10(1): 1975-1987. DOI: 10.1080/22221751.2021.1986428. [29] Guo L, Ma J, Lin J, et al. Virome of rhipicephalus ticks by metagenomic analysis in Guangdong, southern China[J]. Front Microbiol, 2022, 13: 966735. DOI: 10.3389/fmicb.2022.966735. [30] Smith SE, Huang W, Tiamani K, et al. Emerging technologies in the study of the virome[J]. Curr Opin Virol, 2022, 54: 101231. DOI: 10.1016/j.coviro.2022.101231.