• 中国精品科技期刊
  • 《中文核心期刊要目总览》收录期刊
  • RCCSE 中国核心期刊(5/114,A+)
  • Scopus收录期刊
  • 美国《化学文摘》(CA)收录期刊
  • WHO 西太平洋地区医学索引(WPRIM)收录期刊
  • 《中国科学引文数据库(CSCD)》核心库期刊 (C)
  • 中国科技核心期刊
  • 中国科技论文统计源期刊
  • 《日本科学技术振兴机构数据库(中国)》(JSTChina)收录期刊
  • 美国《乌利希期刊指南》(UIrichsweb)收录期刊
  • 中华预防医学会系列杂志优秀期刊(2019年)

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2005―2021年山东省细菌性痢疾的时空特征及影响因素分析

王舒姿 张吉玉 代炳芹 韩扬 张艺馨 孙成玺

王舒姿, 张吉玉, 代炳芹, 韩扬, 张艺馨, 孙成玺. 2005―2021年山东省细菌性痢疾的时空特征及影响因素分析[J]. 中华疾病控制杂志, 2025, 29(8): 937-942. doi: 10.16462/j.cnki.zhjbkz.2025.08.011
引用本文: 王舒姿, 张吉玉, 代炳芹, 韩扬, 张艺馨, 孙成玺. 2005―2021年山东省细菌性痢疾的时空特征及影响因素分析[J]. 中华疾病控制杂志, 2025, 29(8): 937-942. doi: 10.16462/j.cnki.zhjbkz.2025.08.011
WANG Shuzi, ZHANG Jiyu, DAI Bingqin, HAN Yang, ZHANG Yixin, SUN Chengxi. Spatio-temporal pattern and associate factors of bacillary dysentery disease in Shandong Province from 2005 to 2021[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(8): 937-942. doi: 10.16462/j.cnki.zhjbkz.2025.08.011
Citation: WANG Shuzi, ZHANG Jiyu, DAI Bingqin, HAN Yang, ZHANG Yixin, SUN Chengxi. Spatio-temporal pattern and associate factors of bacillary dysentery disease in Shandong Province from 2005 to 2021[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2025, 29(8): 937-942. doi: 10.16462/j.cnki.zhjbkz.2025.08.011

2005―2021年山东省细菌性痢疾的时空特征及影响因素分析

doi: 10.16462/j.cnki.zhjbkz.2025.08.011
基金项目: 

山东省疾病预防控制中心青年创新基金 QC-202304

山东省公共卫生重点专科建设项目 Lu Wei Han〔2023〕NO.621

详细信息
    通讯作者:

    孙成玺,E-mail: sunchengxi-1@163.com

  • 中图分类号: R181.3

Spatio-temporal pattern and associate factors of bacillary dysentery disease in Shandong Province from 2005 to 2021

Funds: 

The Youth Innovation Fund of Shandong Center for Disease Control and Prevention QC-202304

Shandong Provincial Public Health Key Specialties Construction Project Lu Wei Han〔2023〕NO.621

More Information
  • 摘要:   目的  分析山东省细菌性痢疾的时空特征,探讨气象、人口、经济、卫生、自然环境等因素与细菌性痢疾发病的关系。  方法  收集2005―2021年山东省细菌性痢疾的发病数据、气象数据和社会环境数据,应用贝叶斯时空模型分析细菌性痢疾的时空特征,识别细菌性痢疾发病的影响因素。  结果  2005―2021年山东省细菌性痢疾累计发病145 644例。2005―2021年山东省细菌性痢疾的发病风险总体呈下降趋势,高风险期出现在每年6―9月,威海市、淄博市、烟台市、济南市和潍坊市为细菌性痢疾发病的热点区。细菌性痢疾的发病与月平均气温(RR=1.030, 95% CI: 1.025~1.034)、月降水量(RR=1.001, 95% CI: 1.001~1.001)、人口自然增长率(RR=1.005, 95% CI: 1.002~1.007)、人均地区生产总值(RR=0.999, 95% CI: 0.999~0.999)、人均地区生产总值增长率(RR=0.987, 95% CI: 0.980~0.994)、卫生技术人员数(RR=0.999, 95% CI: 0.999~0.999)、建成区绿化覆盖率(RR=0.993, 95% CI: 0.992~0.995)有关。  结论  细菌性痢疾的发病与气象因素、社会环境因素相关,应加强高风险区细菌性痢疾的防控,在流行期及时做好健康提示和疫情处置准备。
  • 图  1  2005―2021年山东省细菌性痢疾发病的时间结构效应趋势

    Figure  1.  Temporal structure effects of bacillary dysentery in Shandong Province, from 2005 to 2021

    表  1  2005―2021年山东省各地市细菌性痢疾发病率(/10万)

    Table  1.   Incidence rates of bacillary dysentery in Shandong Province, from 2005 to 2021 (per 100 000)

    城市
    City
    年份 Year
    2005 2006 2007 2008 2009 2010 2011 2012 2013
    济南市 Jinan City 42.807 34.764 29.171 19.285 12.787 10.545 11.779 8.936 5.601
    青岛市 Qingdao City 20.743 13.226 10.445 7.486 5.517 4.416 6.515 4.352 2.800
    淄博市 Zibo City 66.427 58.915 51.808 50.609 39.573 33.844 39.725 24.065 22.384
    枣庄市 Zaozhuang City 27.257 20.670 6.128 3.741 4.659 4.320 6.229 5.404 6.379
    东营市 Dongying City 12.242 11.965 9.322 9.389 5.360 5.626 7.784 5.900 5.122
    烟台市 Yantai City 28.877 24.194 22.612 18.628 13.272 12.483 17.280 11.078 11.219
    潍坊市 Weifang City 33.413 25.728 15.929 11.146 11.778 10.331 15.316 8.654 8.043
    济宁市 Jining City 29.519 17.471 19.307 12.591 6.314 7.839 8.887 7.144 6.699
    泰安市 Taian City 36.421 29.857 20.467 21.845 17.218 21.536 28.526 23.235 23.097
    威海市 Weihai City 75.536 67.053 62.874 59.579 53.128 52.372 53.815 47.066 40.344
    日照市 Rizhao City 13.329 9.492 10.412 5.724 3.519 2.926 4.212 1.903 2.401
    临沂市 Linyi City 11.015 9.122 5.929 5.614 3.772 4.575 5.510 4.059 3.987
    德州市 Dezhou City 7.907 6.643 5.043 3.170 3.020 4.001 5.069 4.475 2.627
    聊城市 Liaocheng City 15.236 13.736 9.103 7.396 4.243 5.692 6.483 3.971 4.381
    滨州市 Binzhou City 19.453 14.718 14.055 11.332 9.163 9.995 12.094 7.126 5.833
    菏泽市 Heze City 9.195 6.046 5.719 3.664 6.110 6.276 8.295 8.971 8.664
    城市
    City
    年份 Year
    2014 2015 2016 2017 2018 2019 2020 2021
    济南市 Jinan City 5.405 3.561 3.456 3.155 2.949 2.761 1.948 1.692
    青岛市 Qingdao City 2.675 1.528 1.423 1.012 1.128 0.884 0.327 0.361
    淄博市 Zibo City 19.155 19.388 10.433 8.899 7.040 6.025 5.015 2.761
    枣庄市 Zaozhuang City 6.003 4.596 4.268 2.599 2.210 1.042 0.441 0.156
    东营市 Dongying City 3.970 4.619 3.610 2.849 2.022 6.056 4.149 2.415
    烟台市 Yantai City 8.922 7.254 4.937 5.564 4.545 5.380 2.928 2.146
    潍坊市 Weifang City 6.917 5.362 4.094 5.265 5.260 3.775 2.268 2.489
    济宁市 Jining City 4.390 3.267 1.916 1.417 1.294 0.682 0.239 0.324
    泰安市 Taian City 21.786 19.891 17.770 17.129 10.742 3.780 3.669 1.803
    威海市 Weihai City 38.251 39.236 7.756 1.234 0.068 0.388 0.344 0.069
    日照市 Rizhao City 3.419 6.733 3.271 2.108 1.378 0.882 0.404 0.269
    临沂市 Linyi City 3.552 2.851 3.304 2.859 3.285 3.169 1.642 2.677
    德州市 Dezhou City 2.401 2.543 2.089 1.173 0.654 0.348 0.534 0.607
    聊城市 Liaocheng City 2.864 3.534 3.512 3.051 2.403 2.083 0.655 0.321
    滨州市 Binzhou City 5.157 5.753 4.755 4.703 4.614 2.931 2.519 1.578
    菏泽市 Heze City 7.466 5.929 5.254 4.544 4.507 3.963 2.103 1.477
    下载: 导出CSV

    表  2  2005―2021年山东省细菌性痢疾发病空间效应风险的后验均值及后验概率

    Table  2.   Posterior mean and posterior probability for the spatial effects of bacillary dysentery in Shandong Province, from 2005 to 2021

    地市
    City
    济南市
    Jinan City
    青岛市
    Qingdao City
    淄博市
    Zibo City
    枣庄市
    Zaozhuang City
    东营市
    Dongying City
    烟台市
    Yantai City
    潍坊市
    Weifang City
    济宁市
    Jining City
    RR值 value 1.975 1.160 3.564 0.342 1.500 2.615 1.701 0.854
    后验概率 Posterior probability 0.998 0.725 1.000 0.000 0.962 1.000 0.989 0.189
    地市
    City
    泰安市
    Tai′an City
    威海市
    Weihai City
    日照市
    Rizhao City
    临沂市
    Linyi City
    德州市
    Dezhou City
    聊城市
    Liaocheng City
    滨州市
    Binzhou City
    菏泽市
    Heze City
    RR值 value 1.489 4.157 0.202 0.692 0.330 0.572 0.744 0.752
    后验概率 Posterior probability 0.959 1.000 0.000 0.035 0.000 0.005 0.065 0.071
    下载: 导出CSV

    表  3  变量筛选的单因素分析结果和多重共线性检验

    Table  3.   Results of univariate analysis and multicollinearity test

    变量
    Variable
    单因素分析 Univariate analysis 多重共线性检验 Multicollinearity test
    回归参数
    Regression parameter
    sx P
    value
    VIF 剔除后VIF
    Adjusted VIF
    月平均气温 Monthly average temperature/℃ 0.069 0.000 < 0.05 1.665 1.662
    月降水量 Monthly rainfall/mm 0.004 0.000 < 0.05 1.809 1.808
    月日照时间 Monthly sunshine duration/h 0.003 0.000 < 0.05 1.307 1.302
    人口自然增长率 Natural population growth rate/‰ -0.112 0.001 < 0.05 1.289 1.305
    人均地区生产总值/元 Gross domestic product per capita/yuan -0.000 0.000 < 0.05 2.458 2.022
    人均地区生产总值增长率 Gross domestic product per capita growth rate/% 0.134 0.001 < 0.05 3.410 2.851
    地方公共预算支出/万元 Local government expenditure/10 000 yuan -0.000 0.000 < 0.05 10.639
    医院床位数/张 Number of beds/beds -0.000 0.000 < 0.05 20.100
    卫生技术人员数/人 Number of health technicians/persons -0.000 0.000 < 0.05 16.898 1.520
    建成区绿化覆盖率 Green coverage/% -0.020 0.001 < 0.05 1.185 1.121
    注:VIF, 方差膨胀因子。
    Note: VIF, variance inflation factor.
    下载: 导出CSV

    表  4  协变量的后验估计及RR

    Table  4.   Posterior estimation of associated factors and RR values

    变量
    Variable
    均值
    Mean
    95% CI 标准差
    s
    RR
    value (95% CI)
    月平均气温 Monthly average temperature/℃ 0.029 (0.025~0.033) 0.002 1.030(1.025~1.034)
    月降水量 Monthly rainfall/mm 0.001 (0.001~0.001) 0.000 1.001(1.001~1.001)
    月日照时间 Monthly sunshine duration/h 0.000 (0.000~0.000) 0.000 1.000(0.999~1.000)
    人口自然增长率 Natural population growth rate/‰ 0.005 (0.002~0.007) 0.001 1.005(1.002~1.007)
    人均地区生产总值/元 Gross domestic product per capita/yuan 0.000 (0.000~0.000) 0.000 0.999(0.999~0.999)
    人均地区生产总值增长率 Gross domestic product per capita growth rate/% -0.013 (-0.020~-0.006) 0.004 0.987(0.980~0.994)
    卫生技术人员数/人 Number of health technicians/persons 0.000 (0.000~0.000) 0.000 0.999(0.999~0.999)
    建成区绿化覆盖率 Green coverage/% -0.007 (-0.008~-0.005) 0.001 0.993(0.992~0.995)
    下载: 导出CSV
  • [1] World Health Organization. Guidelines for the control of shigellosis, including epidemics due to shigella dysenteriae type 1[EB/OL]. (2005-01-01)[2024-07-16]. https://www.who.int/publications/i/item/9241592330.
    [2] 国家科技基础条件平台, 国家人口健康科学数据中心. 公共卫生科学数据中心[EB/OL]. [2024-07-16]. https://www.phsciencedata.cn/Share/ky_sjml.jsp?id=938278fa-6d8e-42f2-be8a-8cc839f5a6c0.
    [3] 张荣兵, 田荣, 何继波, 等. 2014―2022年云南省细菌性痢疾流行病学特征分析[J]. 中华疾病控制杂志, 2024, 28(6): 641-645. DOI: 10.16462/j.cnki.zhjbkz.2024.06.004.

    Zhang RB, Tian R, He JB, et al. Epidemiological characteristics of bacterial dysentery in Yunnan Province from 2014 to 2022[J]. Chin J Dis Control Prev, 2024, 28(6): 641-645. DOI: 10.16462/j.cnki.zhjbkz.2024.06.004.
    [4] Liu ZD, Tong MX, Xiang JJ, et al. Daily temperature and bacillary dysentery: estimated effects, attributable risks, and future disease burden in 316 Chinese Cities[J]. Environ Health Perspect, 2020, 128(5): 57008. DOI: 10.1289/EHP5779.
    [5] Wang L, Xu CD, Xiao GX, et al. Spatial heterogeneity of bacillary dysentery and the impact of temperature in the Beijing-Tianjin-Hebei region of China[J]. Int J Biometeorol, 2021, 65(11): 1919-1927. DOI: 10.1007/s00484-021-02148-3.
    [6] Wang W, Wang YQ, Chen L, et al. Inverted U-shaped association between bacillary dysentery and temperature: a new finding using a novel two-stage strategy in multi-region studies[J]. PLoS Negl Trop Dis, 2023, 17(11): e0011771. DOI: 10.1371/journal.pntd.0011771.
    [7] Yang MY, Chen C, Zhang XB, et al. Meteorological factors affecting infectious diarrhea in different climate zones of China[J]. Int J Environ Res Public Health, 2022, 19(18): 11511. DOI: 10.3390/ijerph191811511.
    [8] Zhang XX, Gu XC, Wang L, et al. Spatiotemporal variations in the incidence of bacillary dysentery and long-term effects associated with meteorological and socioeconomic factors in China from 2013 to 2017[J]. Sci Total Environ, 2021, 755: 142626. DOI: 10.1016/j.scitotenv.2020.142626.
    [9] Zhan YC, Gu H, Li XY. Study on association factors of intestinal infectious diseases based-Bayesian spatio-temporal model[J]. BMC Infect Dis, 2023, 23(1): 720. DOI: 10.1186/s12879-023-08665-3.
    [10] Zhu ZX, Feng Y, Gu LF, et al. Spatio-temporal pattern and associate factors of intestinal infectious diseases in Zhejiang Province, China, 2008-2021: a Bayesian modeling study[J]. BMC Public Health, 2023, 23(1): 1652. DOI: 10.1186/s12889-023-16552-4.
    [11] Besag J, York J, Mollié A. Bayesian image restoration, with two applications in spatial statistics[J]. Ann Inst Stat Math, 1991, 43(1): 1-20. DOI: 10.1007/BF00116466.
    [12] Wang SZ, Liu ZD, Tong M, et al. Real-time forecasting and early warning of bacillary dysentery activity in four meteorological and geographic divisions in China[J]. Sci Total Environ, 2021, 761: 144093. DOI: 10.1016/j.scitotenv.2020.144093.
    [13] Liu ZD, Liu YY, Zhang Y, et al. Effect of ambient temperature and its effect modifiers on bacillary dysentery in Jinan, China[J]. Sci Total Environ, 2019, 650(2): 2980-2986. DOI: 10.1016/j.scitotenv.2018.10.053.
    [14] Yu LJ, Li XL, Wang YH, et al. Short-term exposure to ambient air pollution and influenza: a multicity study in China[J]. Environ Health Perspect, 2023, 131(12): 127010. DOI: 10.1289/EHP12146.
    [15] Ma Y, Wen T, Xing DG, et al. Associations between floods and bacillary dysentery cases in main urban areas of Chongqing, China, 2005-2016: a retrospective study[J]. Environ Health Prev Med, 2021, 26(1): 49. DOI: 10.1186/s12199-021-00971-z.
    [16] Chang QX, Wang KY, Zhang HL, et al. Effects of daily mean temperature and other meteorological variables on bacillary dysentery in Beijing-Tianjin-Hebei region, China[J]. Environ Health Prev Med. 2022, 27: 13. DOI: 10.1265/ehpm.21-00005.
    [17] Chen NT, Chen YC, Wu CD, et al. The impact of heavy precipitation and its impact modifiers on shigellosis occurrence during typhoon season in Taiwan: a case-crossover design[J]. Sci Total Environ, 2022, 848: 157520. DOI: 10.1016/j.scitotenv.2022.157520.
    [18] Kraay ANM, Man O, Levy MC, et al. Understanding the impact of rainfall on diarrhea: testing the concentration-dilution hypothesis using a systematic review and Meta-analysis[J]. Environ Health Perspect, 2020, 128(12): 126001. DOI: 10.1289/EHP6181.
    [19] Gu LF, Cai J, Feng Y, et al. Spatio-temporal pattern and associate factors study on intestinal infectious diseases based on panel model in Zhejiang Province[J]. BMC Public Health, 2024, 24(1): 3041. DOI: 10.1186/s12889-024-20411-1.
    [20] Liu XX, Ma XL, Huang WZ, et al. Green space and cardiovascular disease: a systematic review with Meta-analysis[J]. Environ Pollut, 2022, 301: 118990. DOI: 10.1016/j.envpol.2022.118990.
    [21] 王雅婷, 朋文佳, 苏华林, 等. 2011-018年中国手足口病发病的时空特征及影响因素研究[J]. 中华流行病学杂志, 2022, 43(10): 1562-1567. DOI: 10.3760/cma.j.cn112338-20220416-00307.

    Wang YT, Peng WJ, Su HL, et al. Spatiotemporal characteristics of hand, foot and mouth disease and influencing factors in China from 2011 to 2018[J]. Chin J Epidemiol, 2022, 43(10): 1562-1567. DOI: 10.3760/cma.j.cn112338-20220416-00307.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-26
  • 修回日期:  2025-05-30
  • 刊出日期:  2025-08-10

目录

    /

    返回文章
    返回