Analysis on the changes and influencing factors of newborn birth weight before and after the COVID-19 epidemic
-
摘要:
目的 分析新型冠状病毒感染(简称新冠)疫情前后,新生儿的出生体重变化情况及影响因素。 方法 收集河北省2017―2023年新生儿出生监测数据,将研究对象分为3组:2017―2019年为疫情前,2020―2022年为疫情期间,2023年为疫情后,对比3组新生儿出生体重变化情况,并采用logistic回归分析模型分析影响新生儿体重的危险因素。 结果 新冠疫情后河北省新生儿平均出生体重为(3 287.06±504.97)g,较疫情流行前(3 351.86±493.70)g有所降低;低体重儿发生率也由疫情前的3.77%(5 279/140 147)上升至4.99%(1 135/22 755),巨大儿发生率由疫情前的9.00%(12 618/140 147)下降至6.84%(1 556/22 755)。校正其他因素后的多因素logistic回归分析模型显示,新冠疫情后低体重发生率是疫情前的1.163倍(OR=1.163, 95% CI:1.061~1.275),其中足月低体重发生率是疫情前的1.248(OR=1.248, 95% CI:1.104~1.412),早产低体重发生率是疫情前的1.246倍(OR=1.246, 95% CI:1.150~1.350),新冠疫情流行期间对早产低体重的影响无统计学意义(P>0.05)。新冠疫情、高龄、受教育程度低、产检次数不足、女婴、分娩医院等级高、妊娠并发症是低体重的危险因素,其中三级医院早产低体重率高于一级和二级医院。 结论 新冠疫情流行后河北省新生儿出生体重较疫情前有所下降,低体重儿发生率较疫情前增加。应识别高危人群,加强产前检查和孕期保健,减少低体重的发生。 -
关键词:
- 新生儿 /
- 出生体重 /
- 新型冠状病毒感染疫情
Abstract:Objective To analyze the changes in birth weight of neonates before and after the coronavirus disease 2019 (COVID-19) epidemic and its influencing factors. Methods Birth surveillance data from 2017 to 2023 in Hebei Province were collected, and the study subjects were divided into three groups: the pre-COVID-19 group (2017-2019), the during-COVID-19 group (2020-2022) and the post-COVID-19 group (2023). Results The average birth weight of newborns in Hebei Province was (3 287.06±504.97) g, which was lower than that before the COVID-19 epidemic (3 351.86±493.70) g. The prevalence of low birth weight also increased from 3.77% (5 279/140 147) to 4.99% (1 135/22 755), and the prevalence of macrosomia decreased from 9.00% (12 618/140 147) before the COVID-19 epidemic to 6.84% (1 556/22 755) after the epidemic. The multivariate logistic regression analysis model after adjusting for other risk factors showed that the incidence of low birth weight after the COVID-19 epidemic was 1.163 times higher than that before the COVID-19 epidemic (OR=1.163, 95% CI: 1.061-1.275), of which the incidence of mature low-birth weight was 1.248 times that before the COVID-19 epidemic (OR=1.248, 95% CI: 1.104-1.412), and the incidence of preterm low-birth weight was 1.246 times that before the COVID-19 epidemic (OR=1.246, 95% CI: 1.150-1.350), there was no significant effect on preterm low birth weight during the COVID-19 epidemic (P>0.05). The COVID-19 epidemic, advanced maternal age, low level of education, inadequate number of prenatal check-ups, female infants, high level of delivery hospitals, and pregnancy complications are risk factors for low birth weight, The rate of preterm low-birth weight in tertiary hospitals is higher than that in primary and secondary hospitals. Conclusions After the COVID-19 epidemic, the birth weight of newborns in Hebei Province has decreased compared with that before the COVID-19 epidemic, and the incidence of low birth weight infants has increased. High risk populations should be identified, prenatal check ups and prenatal care should be strengthened, and the occurrence of low weight should be reduced. -
Key words:
- Neonate /
- Birth weight /
- COVID-19 epidemic
-
表 1 新型冠状病毒感染疫情前后河北省新生儿基本情况比较
Table 1. Comparison of the basic situation of newborns in Hebei Province before and after the COVID-19 epidemic
变量 Variable 新型冠状病毒感染疫情前
Pre the COVID-19①新型冠状病毒感染疫情期间
During the COVID-19①新型冠状病毒感染疫情后
After the COVID-19①F/χ2值
valueP值
value出生体重 Birth weight/g 3 351.86±493.70 3 327.92±500.48 3 287.06±504.97 191.341 <0.001 出生孕周/周 Birth gestational week/week 38.79±1.55 38.64±1.59 38.58±1.64 312.610 <0.001 母亲年龄/岁 Materna age/years 29.25±4.50 30.04±4.53 30.44±4.62 1 228.301 <0.001 早产 Premature birth 93.593 <0.001 是 Yes 7 502(5.35) 5 212(6.15) 1 492(6.56) 否 No 132 645(94.65) 79 496(93.85) 21 263(93.44) 产次 Parity 274.913 <0.001 初产 Primiparity 54 670(39.01) 34 106(40.26) 10 186(44.76) 经产 Multiparity 85 477(60.99) 50 602(59.74) 12 569(55.24) 受教育程度 Educational level 4 654.711 <0.001 大学及以上 University and above 56 726(40.48) 42 201(49.82) 13 473(59.21) 高中/中专 High school/vocational school 41 617(29.69) 24 400(28.80) 5 718(25.13) 初中及以下 Middle school and below 41 804(29.83) 18 107(21.38) 3 564(15.66) 新生儿性别 Gender of newborn 0.234 0.889 男 Male 71 385(50.94) 43 095(50.87) 11 554(50.78) 女 Female 68 762(49.06) 41 613(49.13) 11 201(49.22) 出生体重类型 Birth weight type 204.741 <0.001 正常体重 Normal weight 122 250(87.23) 74 049(87.42) 20 064(88.17) 低出生体重 Low birth weight 5 279(3.77) 3 608(4.26) 1 135(4.99) 早产低体重儿 Preterm low-birth weight 3 701(2.64) 2 541(3.00) 814(3.58) 足月低体重儿 Mature low-birth weight 1 578(1.13) 1 067(1.12) 321(1.41) 巨大儿 Macrosomia 12 618(9.00) 7 051(8.32) 1 556(6.84) 产检次数 Inspection frequency 4 625.725 <0.001 0~3 7 035(5.02) 3 468(4.10) 3 82(1.68) 4~7 64 247(45.84) 30 362(35.84) 6 764(29.72) ≥8 68 865(49.14) 50 878(60.06) 15 609(68.60) 妊娠并发症 Pregnancy complications 1 887.302 <0.001 是 Yes 79 976(57.07) 53 774(63.48) 15 956(70.12) 否 No 60 171(42.93) 30 934(36.52) 6 799(29.88) 注:COVID-19, 新型冠状病毒感染。
①以人数(占比/%)或x±s表示。
Note:COVID-19, coronavirus disease 2019.
① Number of people (proportion/%) or x±s.表 2 2017―2023年河北省新生儿出生体重与新型冠状病毒感染疫情的logistic回归分析模型
Table 2. Logistic regression analysis model of newborn birth weight and the COVID-19 epidemic in Hebei Province from 2017 to 2023
出生体重 Birth weight 模型 Model 新型冠状病毒感染疫情期间
During the COVID-19 epidemic新型冠状病毒感染疫情后
After the COVID-19 epidemicβ值
valueOR值
value (95% CI)P值
valueβ值
valueOR值
value (95% CI)P值
value低出生体重 Low birth weight 单因素 Single-factor 0.128 1.137(1.089~1.187) <0.001 0.294 1.341(1.256~1.432) <0.001 多因素 Multi-factor① 0.028 1.028(0.969~1.092) 0.356 0.151 1.163(1.061~1.275) 0.001 巨大儿 Macrosomia 单因素 Single-factor -0.086 0.918(0.890~0.946) <0.001 -0.299 0.742(0.702~0.783) <0.001 多因素 Multi-factor① -0.038 0.962(0.933~0.993) 0.016 -0.235 0.790(0.747~0.836) <0.001 注:COVID-19, 新型冠状病毒感染。
①模型调整的协变量包括母亲年龄、妊娠并发症、产次、产检次数、受教育程度、婚姻状况、既往剖宫产次数、是否早产、终止妊娠孕周、医院等级和新生儿性别等。
Note:COVID-19, coronavirus disease 2019.
① The covariates adjusted for model a include maternal age, pregnancy complications, parity, inspection frequency, education level, marital status, number of previous cesarean sections, preterm birth, gestational age of termination, hospital level, and newborn gender.表 3 2017―2023年河北省低体重儿影响因素分析
Table 3. Analysis of factors influencing low birth weight in Hebei Province from 2017 to 2023
变量
Variable早产低体重
Preterm low-birth weight足月低体重
Mature low-birth weightβ值
valueOR值
value (95% CI)P值
valueβ值
valueOR值
value (95% CI)P值
value时间界定 Timeline 新型冠状病毒感染疫情前期 Pre COVID-19 epidemic 1.000 1.000 新型冠状病毒感染疫情期间 During the COVID-19 0.095 1.100 (1.043~1.160) <0.001 0.121 1.129 (1.043~1.222) 0.003 新型冠状病毒感染疫情后 After the COVID-19 0.220 1.246 (1.150~1.350) <0.001 0.222 1.248 (1.104~1.412) <0.001 母亲年龄/岁 Mother′s age/years <35 1.000 1.000 ≥35 0.278 1.320(1.239~1.407) <0.001 0.130 1.138(1.023~1.266) 0.017 受教育程度 Educational level 大学及以上 University and above 1.000 1.000 高中/中专 High school/vocational school 0.764 2.146(1.993~2.311) <0.001 0.452 1.571(1.411~1.749) <0.001 初中及以下 Middle school and below 0.407 1.502 (1.421~1.589) <0.001 0.219 1.245(1.137~1.362) <0.001 产次 Parity 初产 Primiparity 1.000 1.000 经产 Multiparity -0.093 0.911(0.858~0.968) 0.002 -0.433 0.648(0.591~0.711) <0.001 产检次数 Inspection frequency 0~3 1.270 3.559(3.214~3.941) <0.001 0.542 1.719(1.468~2.013) <0.001 4~7 0.673 1.960(1861~2.065) <0.001 0.129 1.137(1.050~1.232) 0.002 ≥8 1.000 1.000 新生儿性别 Gender of newborn 男 Male 1.000 1.000 女 Female 0.003 1.003(0.956~1.052) 0.914 0.388 1.474(1.369~1.586) <0.001 医院等级 Hospital level 一级 Level 1 1.000 1.000 二级 Level 2 1.120 3.064(1.525~6.155) 0.002 0.121 1.129(0.751~1.698) 0.560 三级 Level 3 3.313 27.473(13.678~55.181) <0.001 0.603 1.828(1.209~2.764) 0.004 妊娠并发症 Pregnancy complications 否 No 1.000 1.000 是 Yes 0.810 2.248(2.118~2.385) <0.001 0.215 1.239(1.147~1.339) <0.001 注:COVID-19, 新型冠状病毒感染。
Note:COVID-19, coronavirus disease 2019. -
[1] Al Salmi I, Hannawi S. Birth weight is inversely correlated with blood pressure: population-based study[J]. J Hypertens, 2020, 38(11): 2205-2214. DOI: 10.1097/HJH.0000000000002545. [2] 李敏, 王宝珠. 陕西省2010―2020年5岁以下儿童死亡监测结果分析[J]. 中华疾病控制杂志, 2023, 27(9): 1019-1024. DOI: 10.16462/j.cnki.zhjbkz.2023.09.006.Li M, Wang BZ. Analysis of mortality monitoring results of children under 5 years old in Shaanxi Province from 2010 to 2020[J]. Chin J Dis Control Prev, 2023, 27(9): 1019-1024. DOI: 10.16462/j.cnki.zhjbkz.2023.09.006. [3] Branda JIF, de Almeida-Pititto B, Bensenor I, et al. Associations of prematurity and low birth weight with blood pressure and kidney function in middle-aged participants of the Brazilian Longitudinal Study of Adult Health: ELSA-Brasil[J]. J Nephrol, 2023, 36(5): 1373-1382. DOI: 10.1007/s40620-022-01549-w. [4] Smith ER, Oakley E, Grandner GW, et al. Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data Meta-analysis[J]. BMJ Glob Health, 2023, 8(1): e009495. DOI: 10.1136/bmjgh-2022-009495. [5] 孔北华, 马丁, 段涛. 妇产科学10版[M]. 北京: 人民卫生出版社, 2024: 100.Kong BH, Ma D, Duan T. Obstetrics and gynecology[M]. Beijing: People's Medical Publishing House, 2024: 100. [6] 国家统计局. 《中国儿童发展纲要(2011―2020年)》终期统计监测报告[N]. 中国信息报, 2021, 12(2).National Bureau of Statistics. Final statistical monitoring report of the Chinese children's development outline (2011-2020)[N]. China Information Daily, 2021, 12(2). [7] 张相明, 赵鹏, 陈思成, 等. 广西桂平市2016―2020年活产新生儿不良出生结局影响因素[J]. 中华疾病控制杂志, 2022, 26(9): 1050-1056. DOI: 10.16462/j.cnki.zhjbkz.2022.09.011.Zhang XM, Zhao P, Chen SC, et al. Analysis of related factors of adverse birth outcomes of living newborns from 2016 to 2020 in Guiping County, Guangxi, China[J]. Chin J Dis Control Prev, 2022, 26(9): 1050-1056. DOI: 10.16462/j.cnki.zhjbkz.2022.09.011. [8] Wei SQ, Bilodeau-Bertrand M, Liu SL, et al. The impact of COVID-19 on pregnancy outcomes: a systematic review and Meta-analysis[J]. CMAJ, 2021, 193(16): E540-E548. DOI: 10.1503/cmaj.202604. [9] 秦宸媛, 刘民, 刘珏. 妊娠期新型冠状病毒感染对母婴健康影响的研究进展[J]. 中华疾病控制杂志, 2024, 28(5): 581-585. DOI: 10.16462/j.cnki.zhjbkz.2024.05.014.Qin CY, Liu M, Liu Y. Research progress on the impact of COVID-19 infection during pregnancy on the health outcomes of pregnant women and their offspring[J]. Chin J Dis Control Prev, 2024, 28(5): 581-585. DOI: 10.16462/j.cnki.zhjbkz.2024.05.014. [10] Kuppusamy P, Prusty RK, Kale DP. High-risk pregnancy in India: prevalence and contributing risk factors-a national survey-based analysis[J]. J Glob Health, 2023, 13: 04116. DOI: 10.7189/jogh.13.04116. [11] 廖芳, 田美玲, 王朔, 等. 妊娠期产前检查次数与低出生体重儿的相关性[J]. 中华疾病控制杂志, 2021, 25(10): 1220-1225. DOI: 10.16462/j.cnki.zhjbkz.2021.10.019.Liao F, Tian ML, Wang S, et al. A study on the relationship between the number of prenatal visits and low birth weight infants[J]. Chin J Dis Control Prev, 2021, 25(10): 1220-1225. DOI: 10.16462/j.cnki.zhjbkz.2021.10.019. [12] Kerker BD, Willheim E, Weis JR. The COVID-19 pandemic: implications for maternal mental health and early childhood development[J]. Am J Health Promot, 2023, 37(2): 265-269. DOI: 10.1177/08901171221140641b. -