A study on the characteristics of spatial and temporal distribution and aggregation of acquired immune deficiency syndrome in China from 2012 to 2021
-
摘要:
目的 分析2012―2021年中国艾滋病(acquired immune deficiency syndrome, AIDS)时空分布规律及聚集区域,为防控提供依据。 方法 从公共卫生科学数据中心、《中国卫生健康统计年鉴》、国家统计局等获取2012―2021年中国艾滋病发病数据和人口学资料。采用描述性分析、空间自相关分析、时空扫描法和标准差椭圆(standard deviation ellipse, SDE)法分别研究疾病流行趋势、空间和时空特征、发病区域特征等。 结果 2012―2019年中国AIDS发病率呈上升趋势[年度变化百分比(annual percentage change, APC)为7.62%, 95% CI:6.52%~9.92%, P < 0.001)],2019―2021年出现下降(APC=-7.64%, 95% CI:-14.12%~-0.74%, P=0.030)。全局自相关分析中莫兰指数(Moran′s I)从2012年的0.240增至2021年的0.414,存在空间正自相关性且不断增强。局部自相关分析中,贵州省、云南省和广西壮族自治区一直是“高-高”聚集模式,内蒙古自治区、辽宁省则是“低-低”聚集模式,河南省和四川省等地区随着时间变化而改变。热点分析表明贵州省等地形成热点集群,同时呈现扩散趋势。时空扫描揭示了云南省、贵州省、四川省、重庆市和广西壮族自治区为疫情重点区域,SDE法提示发病重心由四川省和重庆市向东南方向转移。 结论 研究揭示了中国AIDS疫情特征,防控工作应据此精准配置资源,强化重点区域防控和疫情监测。 Abstract:Objective The purpose of this study was to analyze the spatial and temporal patterns of acquired immune deficiency syndrome(AIDS) incidence and areas of concentration in China from 2012 to 2021, and to provide an evidence for prevention and control. Methods Data on AIDS incidence and demographic information in China from 2012 to 2021 were obtained from the Public Health Science Data Centre, the China Health and Health Statistics Yearbook, and the National Bureau of Statistics. Descriptive analysis, spatial autocorrelation analysis, spatiotemporal scan statistics, and standard deviation ellipse (SDE) methods were used to analyze trends in disease prevalence, spatiotemporal characteristics, and characteristics of affected regions, respectively. Results From 2012 to 2019, the incidence of AIDS in China was on the rise annual percentage change(APC)(APC=7.62%, 95% CI: 6.52%-9.92%, P < 0.001), and from 2019 to 2021, there was a decline in the incidence rate(APC=-7.64%, 95% CI: -14.12%-0.74%, P=0.030). Global autocorrelation analysis showed that the Moran′s I value increased from 0.240 in 2012 to 0.414 in 2021, indicating an increase in positive spatial autocorrelation. In the local spatial autocorrelation analysis, Guizhou Province, Yunnan Province and Guangxi Zhuang Autonomous Region remained in a "high-high" cluster pattern, whereas Inner Mongolia Autonomous Region and Liaoning Province were consistently in a "low-low" cluster pattern; Henan Province and Sichuan Province changed patterns over time. Hotspot analysis showed that hotspot clusters had formed in Guizhou and other provinces, indicating a spreading trend. The spatio-temporal scan revealed that Yunnan Province, Guizhou Province, Sichuan Province, Chongqing City and Guangxi Zhuang Autonomous Region were the key areas of the epidemic, and the SDE method suggested that the focus of the disease shifted from Sichuan Province and Chongqing City to the southeast. Conclusions This study reveals the spatio-temporal characteristics of the AIDS epidemic in China; Prevention and control should be based on these patterns to allocate resources accurately and strengthen interventions in key regions. -
表 1 2012―2021年中国各省(自治区、直辖市)艾滋病发病率(1/10万)
Table 1. Incidence rates (per 100 000) of acquired immune deficiency syndrome in various provinces (autonomous regions and municipalities directly under the Central Government) of China, 2012-2021
省(自治区、直辖市)
Province (autonomous region, municipality directly under the Central Government)2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 北京 Beijing 2.75 2.95 3.33 3.61 3.62 3.43 3.91 3.17 1.89 2.59 天津 Tianjin 1.15 1.37 1.58 1.79 1.79 1.80 1.84 1.58 1.73 2.28 河北 Hebei 0.38 0.57 0.70 0.92 0.79 1.01 1.16 1.31 1.45 1.36 山西 Shanxi 0.70 0.86 1.18 1.35 1.45 1.73 1.49 1.65 1.54 1.92 内蒙古 Inner Mongolia 0.28 0.54 0.81 0.83 1.14 1.23 1.36 1.37 1.17 1.66 辽宁 Liaoning 1.02 1.31 1.49 1.88 2.31 2.51 2.89 2.70 2.24 2.30 吉林 Jilin 0.92 1.25 1.59 1.96 1.99 2.03 2.17 2.28 1.94 2.78 黑龙江 Heilongjiang 0.68 0.98 1.26 1.44 1.48 1.62 1.84 1.96 1.47 1.70 上海 Shanghai 2.78 2.31 1.88 2.15 2.27 2.13 2.13 2.21 1.66 1.60 江苏 Jiangsu 1.24 1.48 1.65 1.98 2.02 1.65 1.93 2.07 1.60 1.83 浙江 Zhejiang 1.79 2.28 2.74 3.02 3.37 3.24 3.14 3.30 2.81 2.64 安徽 Anhui 1.37 1.40 1.43 1.71 2.17 1.85 2.06 2.00 1.72 1.83 福建 Fujian 1.23 1.10 1.65 2.00 2.43 2.50 2.68 2.96 2.76 2.58 江西 Jiangxi 1.27 1.68 1.73 2.60 3.01 3.12 3.55 3.77 3.67 3.85 山东 Shandong 0.30 0.36 0.47 0.62 0.74 0.85 0.96 1.04 1.02 1.01 河南 Henan 3.40 3.03 3.05 3.26 3.17 3.14 3.03 3.43 2.99 3.05 湖北 Hubei 1.48 1.77 1.89 2.02 2.18 2.38 2.50 2.61 2.30 2.57 湖南 Hunan 2.92 3.16 3.40 3.82 4.15 4.42 4.52 4.61 4.09 4.54 广东 Guangdong 2.94 2.89 3.29 3.65 3.80 3.92 4.03 4.01 3.44 3.61 广西 Guangxi 18.15 15.04 14.02 13.25 12.48 12.63 12.32 14.28 14.28 14.19 海南 Hainan 1.48 1.70 1.14 2.10 1.92 1.84 2.24 2.17 2.26 2.32 重庆 Chongqing 5.54 6.16 8.39 8.76 10.20 9.73 11.60 12.58 11.47 11.99 四川 Sichuan 6.09 7.39 8.02 9.55 11.16 13.04 17.47 21.42 16.54 13.95 贵州 Guizhou 4.02 4.43 4.87 6.02 7.42 8.57 10.32 13.20 11.49 10.48 云南 Yunnan 13.63 12.47 12.34 12.31 12.04 11.89 11.52 11.79 12.51 9.12 西藏 Tibet 0.69 0.29 0.67 1.04 1.57 0.85 1.54 0.90 1.34 0.82 陕西 Shaanxi 0.91 1.33 1.41 1.74 2.13 2.33 2.66 2.86 2.45 2.23 甘肃 Gansu 0.55 0.68 0.88 1.20 1.55 1.84 2.35 2.29 2.04 2.00 青海 Qinghai 1.36 1.62 1.85 2.59 2.97 3.29 2.59 3.32 2.42 3.19 宁夏 Ningxia 0.75 0.91 0.87 1.18 1.26 1.50 1.69 2.12 1.55 1.47 新疆 Xinjiang 11.09 8.02 7.12 8.13 8.14 8.35 10.10 9.50 5.96 5.43 表 2 2012―2021年中国艾滋病发病率(1/10万)全局自相关分析结果
Table 2. Global spatial autocorrelation analysis of acquired immune deficiency syndrome (AIDS) incidence rates (per 100 000) in China, 2012-2021
年份
Year全局莫兰指数
Global Moran′s I index莫兰指数 Moran′s I Z值 value P值 value 2012 0.240 2.627 0.008 2013 0.272 2.859 0.004 2014 0.296 2.992 0.002 2015 0.325 3.187 0.001 2016 0.368 3.502 < 0.001 2017 0.387 3.648 < 0.001 2018 0.385 3.575 < 0.001 2019 0.406 3.804 < 0.001 2020 0.435 4.127 < 0.001 2021 0.414 4.000 < 0.001 表 3 2012―2021年中国各省(自治区、直辖市)艾滋病发病率(1/10万)局部自相关聚集情况
Table 3. Local spatial autocorrelation analysis of acquired immune deficiency syndrome incidence rates (per 100 000) across provinces, autonomous regions, and municipalities in China, 2012-2021
年份
Year“低-低
"Low-low"“高-高”
"High-high"“低-高”
"Low-high"“高-低”
"High-low"2012 内蒙古、吉林、辽宁、宁夏、黑龙江
Inner Mongolia, Jilin, Liaoning, Ningxia, Heilongjiang贵州、云南、广西
Guizhou, Yunnan, Guangxi西藏
Tibet河南
Henan2014 内蒙古、吉林、辽宁、黑龙江、河南
Inner Mongolia, Jilin, Liaoning, Heilongjiang, Henan贵州、云南、广西
Guizhou, Yunnan, Guangxi西藏
Tibet2016 内蒙古、辽宁、黑龙江、河南
Inner Mongolia, Liaoning, Heilongjiang, Henan四川、重庆、云南、贵州、广西、湖南
Sichuan, Chongqing, Yunnan, Guizhou, Guangxi, Hunan西藏
Tibet2018 内蒙古、辽宁、河北、河南
Inner Mongolia, Liaoning, Hebei, Henan四川、重庆、云南、贵州、广西
Sichuan, Chongqing, Yunnan, Guizhou, Guangxi西藏
Tibet2020 内蒙古、辽宁、河北、河南、江苏
Inner Mongolia, Liaoning, Hebei, Henan, Jiangsu四川、重庆、云南、贵州、广西、湖南
Sichuan, Chongqing, Yunnan, Guizhou, Guangxi, Hunan西藏
Tibet表 4 2012―2021年全国艾滋病发病率冷点空间格局
Table 4. Spatial distribution of cold spots for AIDS incidence in China, 2012-2021
年份
Year冷点 Cold spot 99% CI(P < 0.05) 95% CI(P < 0.05) 90% CI(P < 0.05) 2012 北京、天津、河北、山东、山西、江苏
Beijing, Tianjin, Hebei, Shandong, Shanxi, Jiangsu内蒙古、陕西、辽宁
Inner Mongolia, Shaanxi, Liaoning2013 内蒙古、辽宁、北京、天津、河北、山东、山西、江苏
Inner Mongolia, Liaoning, Beijing, Tianjin, Hebei, Shandong吉林、上海
Jilin、Shanghai2014 山东
Shandong内蒙古、河北、天津、北京、江苏
Inner Mongolia, Hebei, Tianjin, Beijing, Jiangsu吉林、辽宁、山西、上海
Jilin, Liaoning, Shanxi、Shanghai2015 河北、天津、北京、山东
Hebei, Tianjin, Beijing, Shandong内蒙古、山西、辽宁、江苏
Inner Mongolia, Shanxi, Liaoning, Jiangsu吉林、上海
Jilin, Shanghai2016 河北、天津、北京、山东
Hebei, Tianjin, Beijing, Shandong内蒙古、山西、辽宁、江苏
Inner Mongolia, Shanxi, Liaoning, Jiangsu吉林
Jilin2017 河北、天津、北京、山东
Hebei, Tianjin, Beijing, Shandong内蒙古、山西、辽宁、江苏
Inner Mongolia, Shanxi, Liaoning, Jiangsu吉林、安徽
Jilin, Anhui2018 河北、天津、北京、山东
Hebei, Tianjin, Beijing, Shandong内蒙古、山西、辽宁、江苏
Inner Mongolia, Shanxi, Liaoning, Jiangsu吉林、安徽
Jilin, Anhui2019 河北、天津、北京、山东
Hebei, Tianjin, Beijing, Shandong内蒙古、山西、辽宁、江苏
Inner Mongolia, Shanxi, Liaoning, Jiangsu吉林、安徽
Jilin, Anhui2020 河北、天津、北京、山东
Hebei, Tianjin, Beijing, Shandong内蒙古、山西、辽宁、江苏
Inner Mongolia, Shanxi, Liaoning, Jiangsu吉林、安徽
Jilin, Shanghai,2021 河北、天津、北京、山东
Hebei, Tianjin, Beijing, Shandong内蒙古、辽宁、江苏
Inner Mongolia, Shanxi, Liaoning, Jiangsu吉林
Jilin表 5 2012―2021年全国艾滋病发病率热点空间格局
Table 5. Spatial pattern of hotspots in national acquired immune deficiency syndrome incidence, 2012-2021
年份
Year热点 Hot spot 99% CI(P < 0.05) 95% CI(P < 0.05) 90% CI(P < 0.05) 2012 云南
Yunnan四川、贵州、广西、海南
Sichuan, Guizhou, Guangxi, Hainan2013 云南、贵州、广西
Yunnan, Guizhou, Guangxi四川
Sichuan重庆、湖南、海南
Chongqing, Hunan, Hainan2014 云南、贵州、广西
Yunnan, Guizhou, Guangxi四川、重庆
Sichuan, Chongqing2015 四川、云南、贵州、广西
Sichuan, Yunnan, Guizhou, Guangxi重庆、湖南
Chongqing, Hunan海南
Hainan2016 四川、云南、贵州、广西
Sichuan, Yunnan, Guizhou, Guangxi重庆、湖南
Chongqing, Hunan2017 四川、云南、贵州、广西
Sichuan, Yunnan, Guizhou, Guangxi重庆、湖南
Chongqing, Hunan2018 四川、云南、贵州、广西
Sichuan, Yunnan, Guizhou, Guangxi重庆
Chongqing湖南
Hunan2019 四川、云南、贵州、广西
Sichuan, Yunnan, Guizhou, Guangxi重庆、湖南
Chongqing, Hunan2020 四川、云南、贵州、广西
Sichuan, Yunnan, Guizhou, Guangxi重庆、湖南
Chongqing, Hunan海南
Hainan2021 四川、云南、贵州、广西
Sichuan, Yunnan, Guizhou, Guangxi,重庆、湖南、海南
Chongqing, Hunan, Hainan广东
Guangdong表 6 2012―2021年中国各省(自治区、直辖市)艾滋病发病数时空扫描聚集性分析
Table 6. Spatiotemporal clustering analysis of acquired immune deficiency syndrome cases in provinces, autonomous regions and municipalities of China, 2012-2021
聚集性
Aggregation聚集区域
Triple aggregation area聚集时间
Aggregate time实际发病数/例
Actual incidence/case理论发病数/例
Theoretical incidence/caseRR值
valueLLR值
valueP值
value一类聚集区
Class Ⅰ gathering area云南、贵州、四川、重庆、广西
Yunnan, Guizhou, Sichuan, Chongqing, Guangxi2017―2021 169 096 49 877.120 4.44 102 628.000 < 0.001 二类聚集区
Class Ⅱ gathering area云南、贵州、四川、重庆、广西
Yunnan, Guizhou, Sichuan, Chongqing, Guangxi2012―2015 92 548 38 365.950 2.70 30 269.990 < 0.001 三类聚集区
Class Ⅲ gathering areas新疆
Xinjiang2012―2015 7 721 3 670.840 2.12 1 705.550 < 0.001 四类聚集区
Class Ⅳ gathering areas湖南
Hunan2016 2 809 2 645.040 1.06 5.000 0.762 注:LLR,对数似然比。
Note: LLR, log likelihood ratio.表 7 2012―2021年全国艾滋病发病率标准差椭圆分析
Table 7. Standard deviation ellipse analysis of national acquired immune deficiency syndrome incidence rates, 2012-2021
年份 Year 重心位置 Centre of gravity 转移方向 Direction of divert 椭圆面积变化 Change in ellipse area 2012 重庆 Chongqing ― ― 2015 重庆 Chongqing 东北 Northeast 缩小 Diminish 2018 四川 Sichuan 西北 Northwest 缩小 Diminish 2021 重庆 Chongqing 东南 Southeast 缩小 Diminish 注:“―”表示数据无法获取。
Note: "―" indicates that the date can′t be obtained. -
[1] Pang XW, Wei H, Huang JH, et al. Patterns and risk of HIV-1 transmission network among men who have sex with men in Guangxi, China[J]. Sci Rep, 2021, 11(1): 513. DOI: 10.1038/s41598-020-79951-2. [2] 中国疾病预防控制中心性病艾滋病预防控制中心. 2024年12月全国艾滋病性病疫情[J]. 中国艾滋病性病, 2025, 31(3): 225. DOI: 10.13419/j.cnki.aids.2025.03.01.National Center for AIDS/STD Control and Prevention, China CDC. National AIDS STD epidemic in December 2024[J]. Chin J AIDS STD, 2025, 31(3): 225. DOI: 10.13419/j.cnki.aids.2025.03.01. [3] 金丽娟, 许泉立. 中国COVID-19疫情的空间格局和时空演化[J]. 中华疾病控制杂志, 2021, 25(11): 1320-1326. DOI: 10.16462/j.cnki.zhjbkz.2021.11.015.Jin LJ, Xu QL. The spatial pattern and spatio-temporal evolution of COVID-19 in China[J]. Chin J Dis Control Prev, 2021, 25(11): 1320-1326. DOI: 10.16462/j.cnki.zhjbkz.2021.11.015. [4] Zhu H, Zhao H, Ou R, et al. Epidemiological characteristics and spatiotemporal analysis of mumps from 2004 to 2018 in Chongqing, China[J]. Int J Environ Res Public Health, 2019, 16(17): 3052. DOI: 10.3390/ijerph16173052. [5] Chu XJ, Song DD, Chu N, et al. Spatial and temporal analysis of severe fever with thrombocytopenia syndrome in Anhui Province from 2011 to 2023[J]. J Epidemiol Glob Health, 2024, 14(3): 503-512. DOI: 10.1007/s44197-024-00235-3. [6] Gao S, Geng XY, Lu QB, et al. Epidemiological characteristics and spatio-temporal aggregation of severe fever with thrombocytopenia syndrome in Jinan City, China, 2018-2022[J]. PLoS Negl Trop Dis, 2023, 17(12): e0011807. DOI: 10.1371/journal.pntd.0011807. [7] Liu JG, Li SJ, Ji Q. Regional differences and driving factors analysis of carbon emission intensity from transport sector in China[J]. Energy, 2021, 224: 120178. DOI: 10.1016/j.energy.2021.120178. [8] Bao YJ, Li YX, Zhou YB, et al. Global burden associated with rare infectious diseases of poverty in 2021: findings from the Global Burden of Disease Study 2021[J]. Infect Dis Poverty, 2024, 13(1): 85. DOI: 10.1186/s40249-024-01249-6. -