Citation: | XUN Lu-ning, ZHANG Fan, SUN Ji-xin, CAO Ya-jing, SUN Zhen, SHI Wei-wei, LI Mei, CUI Ze. Prediction and analysis of road traffic injury death trend based on ARIMA model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2020, 24(4): 467-472. doi: 10.16462/j.cnki.zhjbkz.2020.04.019 |
[1] |
World Health Organization. Road traffic injuries[EB/OL]. (2018-01-16)[2018-05-07]. http://www.who.int/violence_injury_prevention/road_traffic/en.
|
[2] |
Zhang X, Xiang H, Jing R, et al. Road traffic injuries in the people's republic of China, 1951-2008[J]. Traffic Inj Prev, 2011, 12(6): 614-620. DOI: 10.1080/15389588.2011.609925.
|
[3] |
袁慧, 王声湧.我国伤害预防与控制工作的主要进展及展望[J].中华疾病控制杂志, 2017, 21(10): 971-973, 978. DOI: 10.16462/j.cnki.zhjbkz.2017.10.001.
Yuan H, Wang SY. Progress and prospect on injury prevention and control in China[J]. Chin J Dis Control Prev, 2017, 21(10): 971-973, 978. DOI: 10.16462/j.cnki.zhjbkz.2017.10.001.
|
[4] |
庞媛媛, 张徐军, 崔梦晶, 等.道路交通伤害预测方法研究进展[J].伤害医学(电子版), 2013, 2(2): 49-53. DOI: 10.3868/j.issn.2095-1566.2013.02.011.
Pang YY, Zhang XJ, Cui MJ, et al. Research progresses of predicting methods of road traffic injuries[J]. Injury Medicine(Electronic Edition), 2013, 2(2): 49-53. DOI: 10.3868/j.issn.2095-1566.2013.02.011.
|
[5] |
高刘伟, 张徐军, 周义夕, 等. BP神经网络在道路交通伤害预测应用的研究进展[J].伤害医学(电子版), 2019, 8(1): 53-57. DOI: 10.3868/j.issn.2095-1566.2019.01.010.
Gao LW, Zhang XJ, Zhou YX, et al. Research progress of BP neural network in prediction of road traffic injury[J]. Injury Medicine(Electronic Edition), 2019, 8(1): 53-57. DOI: 10.3868/j.issn.2095-1566.2019.01.010.
|
[6] |
尹锡玲, 代文灿, 李德云, 等. 2004-2016年珠海市道路交通伤害时间序列分析[J].实用预防医学, 2019, 26(5): 555-558. DOI: 10.3969/j.issn.1006-3110.2019.05.012.
Yin XL, Dai WC, Li DY, et al. Time series analysis of road traffic injuries in Zhuhai city, 2004-2016[J]. Pract Prevent Med, 2019, 26(5): 555-558. DOI: 10.3969/j.issn.1006-3110.2019.05.012.
|
[7] |
庞媛媛, 张徐军, 涂志斌, 等.自回归移动平均混合模型在中国道路交通伤害预测中的应用[J].中华流行病学杂志, 2013, 34(7): 736-739. DOI: 10.3760/cma.j.issn.0254-6450.2013.07.018.
Pang YY, Zhang XJ, Tu ZB, et al. Autoregressive integrated moving average model in predicting road traffic injury in China[J]. Chin J Epidemiol, 2013, 34(7): 736-739. DOI: 10.3760/cma.j.issn.0254-6450.2013.07.018.
|
[8] |
高景宏, 朱瑶, 熊黎黎, 等.汕头市某三甲医院2002-2012年交通伤害病例的时间序列分析[J].中华疾病控制杂志, 2014, 18(10): 917-921. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jbkzzz201410003
Gao JH, Zhu Y, Xiong LL, et al. The traffic injuries of a tertiary hospital in Shantou city: a time-series analysis, 2002-2012[J]. Chin J Dis Control Prev, 2014, 18(10): 917-921. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jbkzzz201410003
|
[9] |
王燕.时间序列分析-基于R[M].北京: 中国人民大学出版社, 2015.
Wang Y. Time series analysis with R[M]. Beijing: China Renmin University Press, 2015.
|
[10] |
洪志敏, 郝慧, 房祥忠, 等. ARIMA模型在京津冀区域手足口病发病趋势预测中的应用[J].数理统计与管理, 2018, 37(2): 191-197. DOI: 10.13860/j.cnki.sltj.20171013-002.
Hong ZM, Hao H, Fang XZ, et al. Application of ARIMA model in predicting the incidence trend of hang, foot and mouth disease in Beijing, Tianjin and Hebei[J]. Journal of Applied Statistics and Management, 2018, 37(2): 191-197. DOI: 10.13860/j.cnki.sltj.20171013-002.
|
[11] |
朱佳佳, 胡登利, 洪秀琴, 等.基于时空大数据的甲型肝炎发病率分布特征分析及预测模型[J].中华疾病控制杂志, 2018, 22(11): 1144-1147. DOI: 10.16462/j.cnki.zhjbkz.2018.11.012.
Zhu JJ, Hu DL, Hong XQ, et al. Analysis of distribution characteristics and prediction model of hepatitis a incidence based on spatiotemporal big data[J]. Chin J Dis Control Prev, 2018, 22(11): 1144-1147. DOI: 10.16462/j.cnki.zhjbkz.2018.11.012.
|
[12] |
孟凡东, 吴迪, 隋承光. 2004-2015年中国狂犬病发病数据ARIMA乘积季节模型的建立及预测[J].中国卫生统计, 2016, 33(3): 389-391, 395. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwstj201603006
Meng FD, Wu D, Sui CG. Human rabies incidence in China: trends and predictions from a time series analysis from 2004 through 2015[J]. Chin J Health Statistics, 2016, 33(3): 389-391, 395. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwstj201603006
|
[13] |
Wang X, Yu H, Nie C, et al. Road traffic injuries in China from 2007 to 2016: the epidemiological characteristics, trends and influencing factors[J]. Peer J, 2019, 7: e7423. DOI: 10.7717/peerj.7423.
|
[14] |
Leilei D, Pengpeng Y, Haagsma JA, et al. The burden of injury in China, 1990-2017: findings from the global burden of disease study 2017[J]. Lancet Public Health, 2019, 4(9): 449-461. DOI: 10.1016/S2468-2667(19)30125-2.
|
[15] |
栗华, 朱硕斌, 张中朝, 等. 2006-2009年河北省部分城乡居民道路交通伤害监测分析[J].中国慢性病预防与控制, 2011, 19(3): 257-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmxbyfykz201103014
Li H, Zhu SB, Zhang ZC, et al. Analysis of road traffic injuries among the residents of some urban and rural areas Hebei province from 2006 to 2009[J]. Chin J Prev Contr Chron Dis, 2011, 19(3): 257-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmxbyfykz201103014
|
[16] |
刘莹, 胡锡敏, 陈言, 等ARIMA模型在海南省2014-2017年居民自杀死亡率中的应用[J].中华流行病学杂志, 2018, 39(5): 664-668. DOI: 10.3760/cma.j.issn.0254-6450.2018.05.024.
Liu Y, Hu XM, Chen Y, et al. Application of ARIMA model in prediction of mortality rate of suicide in Hainan province[J]. Chin J Epidemiol, 2018, 39(5): 664-668. DOI: 10.3760/cma.j.issn.0254-6450.2018.05.024.
|
[17] |
王晨, 郭倩, 周罗晶.基于R语言的ARIMA模型对流感样病例发病趋势的预测[J].中华疾病控制杂志, 2018, 22(9): 957-960. DOI: 10.16462/j.cnki.zhjbkz.2018.09.020.
Wang C, Guo Q, Zhou LJ. Forecast of incidence trend of influenza-like illness by the ARIMA model based on R[J]. Chin J Dis Control Prev, 2018, 22(9): 957-960. DOI: 10.16462/j.cnki.zhjbkz.2018.09.020.
|
[18] |
杨慧欣, 赵晨皓, 雒静静, 等. 2011-2018年我国登革热疫情时间序列分析及空间自相关分析[J].中华疾病控制杂志, 2019, 23(10): 1250-1254. DOI: 10.16462/j.cnki.zhjbkz.2019.10.018.
Yang HX, Zhao CH, Luo JJ, et al. Time series anlysis and spatial autocorrelation analysis of dengue data in China from 2011 to 2018[J]. Chin J Dis Control Prev, 2019, 23(10): 1250-1254. DOI: 10.16462/j.cnki.zhjbkz.2019.10.018.
|
[19] |
王克伟, 李金平, 邓超, 等.细菌性痢疾自回归滑动平均和非线性自回归组合模型预测研究[J].第二军医大学学报, 2017, 38(10): 1315-1320. DOI: 10.16781/j.0258-879x.2017.10.1315.
Wang KW, Li JP, Deng C, et al. Application of ARIMA-NAR combined model in predicting bacillary dydentery[J]. Acad J Sec Mil Med Univ, 2017, 38(10): 1315-1320. DOI: 10.16781/j.0258-879x.2017.10.1315.
|