Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 24 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
TAN Hui-yi, LI Chun-ying, XIAO Lan, LIU Fu-qiang, WU Cheng-qiu. Epidemiological characteristics and trend prediction of pertussis in Hunan Province from 2009 to 2018[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2020, 24(11): 1263-1268, 1281. doi: 10.16462/j.cnki.zhjbkz.2020.11.005
Citation: TAN Hui-yi, LI Chun-ying, XIAO Lan, LIU Fu-qiang, WU Cheng-qiu. Epidemiological characteristics and trend prediction of pertussis in Hunan Province from 2009 to 2018[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2020, 24(11): 1263-1268, 1281. doi: 10.16462/j.cnki.zhjbkz.2020.11.005

Epidemiological characteristics and trend prediction of pertussis in Hunan Province from 2009 to 2018

doi: 10.16462/j.cnki.zhjbkz.2020.11.005
Funds:

Science and Health Joint Project of Hunan Natural Science Foundation 2019JJ80070

More Information
  • Corresponding author: LIU Fu-qiang, E-mail:liufq2001@163.com; WU Cheng-qiu, E-mail:84669106@qq.com
  • Received Date: 2020-06-17
  • Rev Recd Date: 2020-09-10
  • Publish Date: 2020-11-10
  •   Objective  Analyzing the epidemiological characteristics of pertussis in Hunan Pro-vince from 2009 to 2018, and establishing an autoregressive moving average model, to provide scientific basis for the prevention and control of pertussis.  Methods  The surveillance data of pertussis in Hunan Pro-vince during 2009-2019 were collected from the infectious disease reporting information management system, and the epidemiological characteristics of pertussis were analyzed. A prediction model was established based on the monthly incidence date fron January 2009 to December 2018, and the pertussis incidence of 2020 was predicted.  Results  2 530 pertussis cases were reported in Hunan Province from 2009 to 2018 with an average annual incidence of 0.371/100 000. The incidence of pertussis was relatively higher between May and September, which was lower between October and April of the next year. The incidence was higher in Loudi, Yiyang, Changsha and Chenzhou. The incidence of pertussis in male was higher than that in female, and the reported cases were mainly composed of scattered children, preschool children and students. ARIMA (0, 1, 1) × (0, 1, 0)12 was the optimal prediction model, and the incidence of pertussis in 2019 was basically consistent with that predicted by the model. The incidence of pertussis predicted by ARIMA in 2020 was 7.642/100 000, which was higher than that in 2019.  Conclusions  Pertussis began to break out in Hunan Province in 2018, and the incidence continued increasing. The phenomenon of "pertussis recurrence" may exist in Hunan Province. ARIMA model was effective in predicting the short-term incidence trend of pertussis, and it was predicted that the incidence level will continue increasing in 2020, so the epidemic prevention and control strategy of pertussis should be adjusted according to the epidemiological characteristics and specific situations in Hunan Province.
  • loading
  • 崔健, 曹雷, 郑景山, 等.中国2015年国家免疫规划疫苗报告接种率分析[J].中国疫苗和免疫, 2017, 23(6):601-607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjhmy201503010

    Cui J, Cao L, Zheng JS, et al. Reported coverage of vaccines in the National Immunization Program of China, 2015[J]. Chinese Journal of Vaccines and Immunization, 2017, 23(6):601-607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjhmy201503010
    宁桂军, 高源, 吴丹, 等.中国2011-2017年百日咳流行病学特征分析[J].中国疫苗和免疫, 2018, 24(3):264-267, 273. http://www.cqvip.com/QK/90851A/201803/675603079.html

    Ning GJ, Gao Y, Wu D, et al. Epidemiology of pertussis in China, 2011-2017[J]. Chinese Journal of Vaccines and Immunization, 2018, 24(3):264-267, 273. http://www.cqvip.com/QK/90851A/201803/675603079.html
    蒋凤, 申涛, 张德著, 等. 2014-2016年贵州省百日咳报告病例流行病学特征分析[J].中国疫苗和免疫, 2018, 24(3):268-273. http://www.cqvip.com/QK/90851A/201803/675603080.html

    Jiang F, Shen T, Zhang DZ, et al. Epidemiological characteristics of pertussis in Guizhou province, 2014-2016[J]. Chinese Journal of Vaccines and Immunization, 2018, 24(3):268-273. http://www.cqvip.com/QK/90851A/201803/675603080.html
    吴丹遐, 陈强, 申昆玲.百日咳的临床研究进展[J].中国当代儿科杂志, 2016, 18(9):897-902. http://d.wanfangdata.com.cn/Periodical/zgddekzz201609023

    Wu DX, Chen Q, Shen KL. Recent progress in clinical research on pertussis[J]. Chin J Contemp Pediatr, 2016, 18(9):897-902. http://d.wanfangdata.com.cn/Periodical/zgddekzz201609023
    王增国, 马超锋, 闫永平.全球百日咳重现及中国百日咳相关研究现状[J].中国疫苗和免疫, 2016, 22(3):345-349. http://www.cqvip.com/QK/90851A/201603/669630039.html

    Wang ZG, Ma CF, Yan YP. Global Pertussis Resurgence and the Status of Related Pertussis Researches in China[J]. Chinese Journal of Vaccines and Immunization, 2016, 22(3):345-349. http://www.cqvip.com/QK/90851A/201603/669630039.html
    Domenech de Cellès M, King AA, Rohani P. Commentary: resolving pertussis resurgence and vaccine immunity using mathematical transmission models[J]. Hum Vaccin Immunother, 2019, 15(3):683-686. DOI: 10.1080/21645515.2018.1549432.
    Aloe C, Kulldorff M, Bloom BR. Geospatial analysis of nonmedical vaccine exemptions and pertussis outbreaks in the United States[J]. Proc Natl Acad Sci U S A, 2017, 114(27):7101-7105. DOI: 10.1073/pnas.1700240114.
    杨维中.传染病预警理论与实践[M].北京:人民卫生出版社, 2012.

    Yang WZ. Early Warning of Infectious Disease Theory and Practice[M]. Beijing: People' s Medical Publishing House, 2012.
    Wang K, Song W, Li J, et al. The Use of an Autoregressive Integrated Moving Average Model for Prediction of the Incidence of Dysentery in Jiangsu, China[J]. Asia Pac J Public Health, 2016, 28(4):336-346. DOI: 10.1177/1010539516645153.
    熊昱阳, 任静朝, 段广才.中国2008-2016年手足口病月发病率时间序列分析及预测模型[J].中华疾病控制杂志, 2019, 23(11):1394-1398. DOI: 10.16462/j.cnki.zhjbkz.2019.11.019.

    Xiong YY, Ren JZ, Duan GC. Application of the time series model in prediction of incidence of hand-foot-mouth disease from 2008 to 2016 in China[J]. Chin J Dis Control Prev, 2019, 23(11):1394-1398. DOI: 10.16462/j.cnki.zhjbkz.2019.11.019.
    杨文姣, 肖俊玲, 丁国武. ARIMA模型和BP神经网络模型在甘肃省结核病发病率预测中的应用[J].中华疾病控制杂志, 2019, 23(6):728-732. DOI: 10.16462/j.cnki.zhjbkz.2019.06.021.

    Yang WJ, Xiao JL, Ding GW. Application of ARIMA model and BP neural network model in prediction of tuberculosis incidence in Gansu Province[J]. Chin J Dis Control Prev, 2019, 23(6):728-732. DOI: 10.16462/j.cnki.zhjbkz.2019.06.021.
    郑月彬, 朱国魂.基于Twitter数据的时间序列模型在流行性感冒预测中的应用[J].中国预防医学杂志, 2019, 20(9): 793-798. DOI: 10.16506/j.1009-6639.2019.09.006.

    Zheng YB, Zhu GH. Application of Twitter time series model in influenza prediction[J]. Chin Prev Med, 2019, 20(9): 793-798. DOI: 10.16506/j.1009-6639.2019.09.006.
    黄莉, 陈田木, 杨云斌, 等.应用SARIMA模型预测肺结核发病趋势[J].现代预防医学, 2019, 46(5):794-797, 803. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=XDYF201905007

    Huang L, Chen TM, Yang YB, et al. Application of SARIMA model to predict the incidence of pulmonary tuberculosis[J]. Modern Prevent Med, 2019, 46(5):794-797, 803. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=XDYF201905007
    刘丹丹, 潘跃娜, 焦安夏, 等.疫苗使用前后百日咳的流行病学变化[J].中国实用儿科杂志, 2020, 35(2):157-162. DOI: 10.19538/j.ek2020020617.

    Liu DD, Pan YN, Jiao AX, et al. Epidemiological changes of pertussis before and after the use of vaccines[J]. Chin J Pract Pediatr, 2020, 35(2):157-162. DOI: 10.19538/j.ek2020020617.
    苏琪茹, 姚开虎.疫苗时代疫苗可预防疾病流行病学和临床表现的变化[J].中国当代儿科杂志, 2019, 21(3):195-198. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_other_thesis/040006543909.html

    Su QR, Yao KH. Epidemiological and clinical features of vaccine-preventable diseases in vaccine era[J]. Chin J Contemp Pediatr, 2019, 21(3):195-198. http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_other_thesis/040006543909.html
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (556) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return