Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 25 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LIU Yan-chen, ZHANG Xiao-shu, CUI Xu-dong, JIN Na, ZHAO Xiang-kai, ZHAO Xin, ZHENG Hong-miao, LI Juan-sheng, SHEN Xi-ping, MENG Lei, REN Xiao-wei. Study on the relationship between early clinical symptoms and prognosis of Japanese encephalitis: based on Group LASSO Logistic regression model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(8): 891-897,934. doi: 10.16462/j.cnki.zhjbkz.2021.08.005
Citation: LIU Yan-chen, ZHANG Xiao-shu, CUI Xu-dong, JIN Na, ZHAO Xiang-kai, ZHAO Xin, ZHENG Hong-miao, LI Juan-sheng, SHEN Xi-ping, MENG Lei, REN Xiao-wei. Study on the relationship between early clinical symptoms and prognosis of Japanese encephalitis: based on Group LASSO Logistic regression model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(8): 891-897,934. doi: 10.16462/j.cnki.zhjbkz.2021.08.005

Study on the relationship between early clinical symptoms and prognosis of Japanese encephalitis: based on Group LASSO Logistic regression model

doi: 10.16462/j.cnki.zhjbkz.2021.08.005
Funds:

Natural Science Foundation of Gansu Province 18JR3RA040

Natural Science Foundation of Gansu Province 20JR10RA598

More Information
  • Corresponding author: MENG Lei, E-mail: ccdcusc101@163.com; REN Xiao-wei, E-mail: renxw@lzu.edu.cn
  • Received Date: 2020-11-20
  • Rev Recd Date: 2021-02-05
  • Available Online: 2021-08-24
  • Publish Date: 2021-08-10
  •   Objective  To explore the application of Group least absolute shrinkage and selection operator (LASSO) Logistic regression model in the study of the relationship between early clinical symptoms and prognosis of Japanese encephalitis (JE).  Methods  The data on JE in Gansu Province between 2017 to 2018 were collected from the infectious diseases system of China information system for diseases control and prevention. The Group LASSO Logistic regression model of the prognostic factors of JE was established. Punishment parameters were selected through the cross-validation method to screen out early symptoms that affect the prognosis of JE.  Results  Of the 866 included JE patients, 764 had prognostic outcomes, of which 22.5% were dead, 12.6% had sequelae, 17.8% were improved, and 47.1% were cured. The selected variables were consciousness disorder, respiratory failure, changes in respiratory rhythm, increased muscle tone, and history of JE vaccination.  Conclusion  Group LASSO Logistic regression model could be used to screen out early clinical symptoms that have an impact on the prognosis, which is of great significance for early detection of patients who may have a poor prognosis.
  • loading
  • [1]
    李兰娟, 任红. 传染病学[M]. 第8版. 北京: 人民卫生出版社, 2013: 86-92.

    Li LJ, Ren H. Infectious diseases[M]. 8rd ed. Beijing: People's Medical Publishing House, 2013: 86-92.
    [2]
    汪倩. 儿童重症流行性乙型脑炎临床特点及预后分析[D]. 重庆: 重庆医科大学, 2019.

    Wang Q. Clinical features and prognostic analysis of severe Japanese B encephalitis in children[D]. Chongqing: Chongqing Medical University, 2019.
    [3]
    张蕾洁, 金娜, 王琪, 等. Bayes综合判别对流行性乙型脑炎临床分型的鉴别[J]. 中华流行病学杂志, 2019, 40(9): 1164-1167. DOI: 10.3760/cma.j.issn.0254-6450.2019.09.028.

    Zhang LJ, Jin N, Wang Q, et al. Study on clinical classification of Japanese encephalitis by Bayes discriminant analysis[J]. Chin J Epidemiol, 2019, 40(9): 1164-1167. DOI: 10.3760/cma.j.issn.0254-6450.2019.09.028.
    [4]
    方匡南, 章贵军, 张惠颖. 基于Lasso-logistic模型的个人信用风险预警方法[J]. 数量经济技术经济研究, 2014, 31(2): 125-136. DOI: 10.13653/j.cnki.jqte.2014.02.009.

    Fang KN, Zhang GJ, Zhang HY. Individual credit risk prediction method: application of a lasso-logistic model[J]. J Quant Tech Econ, 2014, 31(2): 125-136. DOI: 10.13653/j.cnki.jqte.2014.02.009.
    [5]
    Tibshirani R. Regression shrinkage and selection via the lasso[J]. J Royal Stat Soc: Ser B Methodol, 1996, 58(1): 267-288. DOI: 10.1111/j.2517-6161.1996.tb02080.x.
    [6]
    Yuan M, Lin Y. Model selection and estimation in regression with grouped variables[J]. J Royal Stat Soc: Ser B Stat Methodol, 2006, 68(1): 49-67. DOI: 10.1111/j.1467-9868.2005.00532.x..
    [7]
    金娜, 张晓曙, 张秉玲, 等. 甘肃省2004—2017年流行性乙型脑炎发病及流行特征[J]. 中国公共卫生, 2020, 36(2): 210-214. DOI: 10.11847/zgggws1121131.

    Jin N, Zhang XS, Zhang BL, et al. Incidence trend and prevalence status of Japanese encephalitis in Gansu Province, 2004-2017[J]. Chin J Public Heal, 2020, 36(2): 210-214. DOI: 10.11847/zgggws1121131.
    [8]
    中华人民共和国卫生部. WS 214-2008流行性乙型脑炎诊断标准[S]. 北京: 人民卫生出版社, 2009.

    Ministry of Health of the People's Republic of China. WS 214-2008 Diagnostic criteria for Japanese encephalitis[S]. Beijing: People's Medical Publishing House, 2009.
    [9]
    陈茹, 王晶, 唐少文, 等. 抗结核治疗队列人群药物性肝损害的易感基因多态性研究[J]. 中华流行病学杂志, 2016, 37(7): 925-929. DOI: 10.3760/cma.j.issn.0254-6450.2016.07.004.

    Chen R, Wang J, Tang SW, et al. Study on polymorphisms of genes with susceptibility to drug induced liver injury in a cohort receiving anti-tuberculosis treatment[J]. Chin J Epidemiol, 2016, 37(7): 925-929. DOI: 10.3760/cma.j.issn.0254-6450.2016.07.004.
    [10]
    李泱. 兰州市高血压患病情况的调查分析及模型选择[D]. 兰州: 兰州大学, 2016.

    Li Y. Investigation analysis and model selection of the prevalence of hypertension in Lanzhou city[D]. Lanzhou: Lanzhou University, 2016.
    [11]
    Meier L, van de Geer S, Bühlmann P. The group lasso for logistic regression[J]. J Royal Stat Soc: Ser B Stat Methodol, 2008, 70(1): 53-71. DOI: 10.1111/j.1467-9868.2007.00627.x.
    [12]
    张啸, 赵薇, 胡焕青, 等. 基于group lasso logistic回归的6月龄婴儿贫血预测模型的构建[J]. 中国慢性病预防与控制, 2020, 28(3): 199-205. DOI: 10.16386/j.cjpccd.issn.1004-6194.2020.03.009.

    Zhang X, Zhao W, Hu HQ, et al. Construction of predictive model for Anemia in 6-month-old infants on the basis of group lasso logistic regression[J]. Chin J Prev Control Chronic Dis, 2020, 28(3): 199-205. DOI: 10.16386/j.cjpccd.issn.1004-6194.2020.03.009.
    [13]
    成娟, 梁轩, 郑森爽, 等. 基于Lasso Logistic回归模型的乳腺癌高风险人群筛查利用相关因素研究[J]. 中华疾病控制杂志, 2018, 22(6): 551-554, 559. DOI: 10.16462/j.cnki.zhjbkz.2018.06.003.

    Cheng J, Liang X, Zheng SS, et al. Predictors of breast cancer screening utilization among female at high risk of developing breast cancer: application of a Lasso Logistic model[J]. Chin J Dis Control Prev, 2018, 22(6): 551-554, 559. DOI: 10.16462/j.cnki.zhjbkz.2018.06.003.
    [14]
    刘芹. 儿童流行性乙型脑炎预后危险因素的Meta分析[D]. 重庆: 重庆医科大学, 2018.

    Liu Q. Meta-analysis of the risk factors for prognosis of Japanese encephalitis in children[D]. Chongqing: Chongqing Medical University, 2018.
    [15]
    王阿美. 104例流行性乙型脑炎患者临床特点及预后影响因素分析[D]. 银川: 宁夏医科大学, 2020.

    Wang AM. Clinical characteristics and prognostic risk factors of 104 Japanese encephalitis cases[D]. Yinchuan: Ningxia Medical University, 2018.
    [16]
    Kakoti G, Dutta P, Ram Das B, et al. Clinical profile and outcome of Japanese encephalitis in children admitted with acute encephalitis syndrome[J]. Biomed Res Int, 2013, 2013: 152656. DOI: 10.1155/2013/152656.
    [17]
    Sunwoo JS, Lee ST, Jung KH, et al. Clinical characteristics of severe Japanese encephalitis: a case series from south Korea[J]. Am J Trop Med Hyg, 2017, 97(2): 369-375. DOI: 10.4269/ajtmh.17-0054.
    [18]
    张燕菊. 成人流行性乙型脑炎预后相关因素的分析[D]. 兰州: 兰州大学, 2019.

    Zhang JY. Analysis of prognostic factors in adult Japanese encephalitis[D]. Lanzhou: Lanzhou University, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (912) PDF downloads(163) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return