Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 25 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LIAO Ying, ZHANG Xue-liang, JIAO Hai-yan, WANG Lei. A dynamical model study on the transmission of COVID-19 in Urumqi City[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(8): 905-911, 922. doi: 10.16462/j.cnki.zhjbkz.2021.08.007
Citation: LIAO Ying, ZHANG Xue-liang, JIAO Hai-yan, WANG Lei. A dynamical model study on the transmission of COVID-19 in Urumqi City[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(8): 905-911, 922. doi: 10.16462/j.cnki.zhjbkz.2021.08.007

A dynamical model study on the transmission of COVID-19 in Urumqi City

doi: 10.16462/j.cnki.zhjbkz.2021.08.007
Funds:

National Natural Science Foundation of China 12061079

Natural Science Foundation of Xinjiang Uygur Autonomous Region 2021D01C268

Natural Science Foundation of Xinjiang Uygur Autonomous Region 2019D01C206

More Information
  • Corresponding author: WANG Lei, E-mail: wlei81@126.com
  • Received Date: 2021-02-07
  • Rev Recd Date: 2021-03-22
  • Available Online: 2021-08-24
  • Publish Date: 2021-08-10
  •   Objective  To fit the epidemic situation of COVID-19 in Urumqi City, Xinjiang Uygur Autonomous Region in July 2020, so as to provide the quantitative and theoretical basis for the prevention and control of epidemic.  Methods  A dynamical model with stage control strategy was proposed using compartmental modeling method, based on the tracking and isolation measures taken during the COVID-19 epidemic in July 2020 in Urumqi City. The nonlinear least square method was applied to fit this dynamical model by using multi-source data: the cumulative number of confirmed cases, cured cases and asymptomatic cases of COVID-19 from Health Committee of Xinjiang from July to September 2020.  Results  The parameters of the model were estimated as follows: the rate of diagnosis was 0.6, the infectivity coefficients of latent exposure group and asymptomatic infection group were 0.78 and 0.99 respectively, and the proportion of asymptomatic infection group was 0.4. Parameter sensitivity analysis showed that increasing close tracking and isolation and reducing contact could effectively control the number of new confirmed cases.  Conclusion  The results show that the model has good fitting effect with the actual data; asymptomatic infection is more infectious; the trend of daily effective reproduction number shows that the government control measures are appropriate with great effect; the relevant departments should increase the close tracking and isolation, and continuously emphasize that reducing contact can effectively control the epidemic of COVID-19.
  • loading
  • [1]
    中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案(试行第八版)[J]. 中华临床感染病杂志, 2020, 13(5): 321-328. DOI: 10.3760/cma.j.issn.1674-2397.2020.05.001.

    National Health Commission of the People's Republic of China. COVID-19 diagnosis and treatment plan (trial eighth edition)[J]. Chin J Clin Infect Dis, 2020, 13(5): 321-328. DOI: 10.3760/cma.j.issn.1674-2397.2020.05.001.
    [2]
    白宁, 宋晨玮, 徐瑞. 基于动力学模型的COVID-19疫情预测与控制策略研究[J]. 应用数学学报, 2020, 43(3): 483-493. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSU202003001.htm

    Bai N, Song CW, Xu R. Predicting the trend and evaluating control strategies of COVID-19 based on a dynamical model[J]. Acta Math Appl Sin, 2020, 43(3): 483-493 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSU202003001.htm
    [3]
    Tang B, Wang X, Li Q, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. J Clin Med, 2020, 9(2): E462. DOI: 10.3390/jcm9020462.
    [4]
    Tang B, Bragazzi NL, Li Q, et al. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCoV)[J]. Infect Dis Model, 2020, 5: 248-255. DOI: 10.1016/j.idm.2020.02.001.
    [5]
    Feng XM, Chen J, Wang K, et al. Phase-adjusted estimation of the COVID-19 outbreak in South Korea under multi-source data and adjustment measures: a modelling study[J]. Math Biosci Eng, 2020, 17(4): 3637-3648. DOI: 10.3934/mbe.2020205.
    [6]
    俞骅, 王旭初, 李钧, 等. 杭州市首例新型冠状病毒肺炎病例病毒全基因组序列测定及分析[J]. 中华预防医学杂志, 2020, 54(5): 486-490. DOI: 10.3760/cma.j.cn112150-20200217-00128.

    Yu H, Wang XC, Li J, et al. Genomic analysis of a 2019-novel coronavirus (2019-nCoV) strain in the first COVID-19 patient found in Hangzhou[J]. Chin J Prev Med, 2020, 54(5): 486-490. DOI: 10.3760/cma.j.cn112150-20200217-00128.
    [7]
    朱正保, 仲崇科, 张凯欣, 等. 中国内地新型冠状病毒肺炎流行趋势分析[J]. 中华预防医学杂志, 2020, 54(6): 620-624. DOI: 10.3760/cma.j.cn112150-20200222-00163.

    Zhu ZB, Zhong CK, Zhang KX, et al. Epidemic trend of COVID-19 in Chinese mainland[J]. Chin J Prev Med, 2020, 54(6): 620-624. DOI: 10.3760/cma.j.cn112150-20200222-00163.
    [8]
    新疆维吾尔自治区卫生健康委员会. 防控新型冠状病毒肺炎疫情[EB/OL]. (2020-07-15)[2020-09-17]. http://wjw.xinjiang.gov.cn/hfpc/fkxxfy/fkxxfy.shtml.

    Health Committee of Xinjiang Uygur Autonomous Region. Prevention and control of new coronavirus pneumonia[EB/OL]. (2020-07-15)[2020-09-17]. http://wjw.xinjiang.gov.cn/hfpc/fkxxfy/fkxxfy.shtml.
    [9]
    马知恩, 周义仓, 李建全, 等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004: 1-20.

    Ma ZE, Zhou YC, Li JQ, et al. Mathematical modeling and research on dynamics of infectious diseases[M]. Beijing: Science Press, 2004: 1-20.
    [10]
    Wang WD, Zhao XQ. Threshold dynamics for compartmental epidemic models in periodic environments[J]. J Dyn Differ Equations, 2008, 20(3): 699-717. DOI: 10.1007/s10884-008-9111-8.
    [11]
    乌鲁木齐市人民政府乌鲁木齐市统计局. 2019年乌鲁木齐市国民经济和社会发展统计公报[EB/OL]. (2020-06-18)[2020-06-18]. http://www.urumqi.gov.cn/fjbm/tjj/tjgb/446900.htm.

    Urumqi Statistics Bureau of Urumqi Municipal People's Government. Statistical bulletin of national economic and social development of Urumqi in 2019[EB/OL]. (2020-06-18)[2020-06-18]. http://www.urumqi.gov.cn/fjbm/tjj/tjgb/446900.htm.
    [12]
    魏永越, 卢珍珍, 杜志成, 等. 基于改进的SEIR+CAQ传染病动力学模型进行新型冠状病毒肺炎疫情趋势分析[J]. 中华流行病学杂志, 2020, 41(4): 470-474, 475. DOI: 10.3760/cma.j.cn112338-20200216-00106.

    Wei YY, Lu ZZ, Du ZC, et al. Fitting and forecasting the trend of COVID-19 by SEIR+CAQ dynamic model[J]. Chin J Epidemiol, 2020, 41(4): 470-474, 475. DOI: 10.3760/cma.j.cn112338-20200216-00106.
    [13]
    唐三一, 唐彪, Nicola Luigi Bragazzi, 等. 新型冠状病毒肺炎疫情数据挖掘与离散随机传播动力学模型分析[J]. 中国科学: 数学, 2020, 50(8): 1071-1086. DOI: 10.1360/SSM-2020-0053.

    Tang SY, Tang B, Bragazzi N, et al. Analysis of COVID-19 epidemic traced data and stochastic discrete transmission dynamic model[J]. Sci Sin Math, 2020, 50(8): 1071-1086. DOI: 10.1360/SSM-2020-0053.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (573) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return