Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 25 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
WANG Xu-chun, ZHAI Meng-meng, REN Hao, LI Mei-chen, QUAN Di-chen, ZHANG Jie, CHEN Li-min, QIU Li-xia. Analysis of factors associated with diabetes mellitus in Shanxi Province based on Bayesian network model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(8): 968-974. doi: 10.16462/j.cnki.zhjbkz.2021.08.017
Citation: WANG Xu-chun, ZHAI Meng-meng, REN Hao, LI Mei-chen, QUAN Di-chen, ZHANG Jie, CHEN Li-min, QIU Li-xia. Analysis of factors associated with diabetes mellitus in Shanxi Province based on Bayesian network model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2021, 25(8): 968-974. doi: 10.16462/j.cnki.zhjbkz.2021.08.017

Analysis of factors associated with diabetes mellitus in Shanxi Province based on Bayesian network model

doi: 10.16462/j.cnki.zhjbkz.2021.08.017
Funds:

National Natural Science Foundation of China 81973155

More Information
  • Corresponding author: QIU Li-xia, E-mail: qlx_1126@163.com
  • Received Date: 2020-12-18
  • Rev Recd Date: 2021-03-23
  • Available Online: 2021-08-24
  • Publish Date: 2021-08-10
  •   Objective  For the survey data on diabetes in Shanxi Province in 2015, a Bayesian network model of diabetes-related factors was constructed using the max-min hill-climbing (MMHC) algorithm to explore the network relationships between diabetes and its related factors, and the strength of each influencing factor on diabetes was reflected through network model inference.  Methods  Single-factor analysis and multi-factor logistic regressions were used to initially screen the variables for survey data on diabetes mellitus among residents aged 18 years and above in Shanxi Province. Afterwards, a Bayesian network was constructed with the MMHC algorithm, and the parameters were estimated by great likelihood estimation.  Results  The detection rate of diabetes mellitus in Shanxi Province in 2015 stood at 9.5%. After logistic regression feature screening, eight variables, namely age, occupation, average daily oil intake, hypertension, hyperlipidaemia, BMI and heart rate, were finally entered into the model. The Bayesian network model demonstrated that age, hyperlipidaemia and hypertension were directly related to diabetes; BMI was indirectly related to diabetes by hyperlipidaemia, and the average daily oil intake indirectly affected diabetes by BMI and hyperlipidaemia.  Conclusion  Bayesian network models can well reveal the complex network relationships between diabetes and its associated factors and have a good applicability and prospects in the analysis of disease-related factors.
  • loading
  • [1]
    赵振华, 童亚慧, 杨青敏. 国内外糖尿病自我管理的研究与进展[J]. 上海护理, 2015, 15(4): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHL201504028.htm

    Zhao ZH, Tong YH, Yang QM. Research and progress in diabetes self-management at home and abroad [J]. Shanghai Nursing, 2015, 15(4): 68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHL201504028.htm
    [2]
    Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045 [J]. Diabetes Res Clin Pract, 2018, 138: 271-281. DOI: 10.1016/j.diabres.2018.02.023.
    [3]
    宁光. 中国糖尿病防治的现状及展望[J]. 中国科学: 生命科学, 2018, 48(8): 810-811. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK201808002.htm

    Ning G. Status quo and prospect of prevention and control of diabetes in China [J]. Scientia Sinica Vitae, 2018, 48(8): 810-811. https://www.cnki.com.cn/Article/CJFDTOTAL-JCXK201808002.htm
    [4]
    Aurich H, H Häberle, Wirbelauer C, et al. Classification of postural profiles among mouth-breathing children by learning vector quantization [J]. Methods Inf Med, 2011, 50(4): 349-357. DOI: 10.3414/ME09-01-0039.
    [5]
    魏珍, 张雪雷, 饶华祥, 等. 禁忌搜索算法的贝叶斯网络模型在冠心病影响因素分析中的应用[J]. 中华流行病学杂志, 2016, 37(6): 895-899. DOI: 10.3760/cma.j.issn.0254-6450.2016.06.031.

    Wei Z, Zhang XL, Rao HX, et al. Using the Tabu-search-algorithm-based Bayesian network to analyze the risk factors of coronary heart disease [J]. Chin J Epidemiol, 2016, 37(6): 895-899. DOI: 10.3760/cma.j.issn.0254-6450.2016.06.031.
    [6]
    LMD Campos. Independency relationships and learning algorithms for singly connected networks [J]. J Exp Theor Artif Intell, 1998, 10(4): 511-549. DOI: 10.1080/095281398146743.
    [7]
    Spirtes P, Glymour C, Scheines R. Causation, prediction and search [M]. 2th ed. Cambridge: MIT Press, 2000.
    [8]
    Heckerman D, Geiger D, Chickering DM. Learning Bayesian networks: the combination of knowledge and statistical data [J]. Mach Learn, 1995, 20(3): 197-243. DOI: 10.1007/BF00994016.
    [9]
    Tsamardinos I, Brown LE, Aliferis CF. The max-min hill-climbing Bayesian network structure learning algorithm [J]. Mach Learn, 2006, 65(1): 31-78. DOI: 10.1007/s10994-006-6889-7.
    [10]
    庞邵杰. 成年人血脂及磷脂谱与胰岛素抵抗的关系研究[D]. 北京: 中国疾病预防控制中心, 2018.

    Pang SJ. Associations of lipid parameters and phospholipid profiles with insulin resistance among adults [D]. Beijing: Chinese Center for Disease Control and Prevention, 2018.
    [11]
    Rao H, Wu E, Fu S, et al. The higher prevalence of truncal obesity and diabetes in American than Chinese patients with chronic hepatitis C might contribute to more rapid progression to advanced liver disease [J]. Aliment Pharmacol Ther, 2017, 46(8): 731-740. DOI: 10.1111/apt.14273
    [12]
    Hu M, Yi W, Yu L, et al. Prevalence, awareness, treatment, and control of hypertension and associated risk factors among adults in Xi'an, China: a cross-sectional study[J]. Medicine, 2016, 95(34): e4709. DOI: 10.1097/MD.0000000000004709.
    [13]
    Huang Y, Gao L, Xie X, et al. Epidemiology of dyslipidemia in Chinese adults: Meta-analysis of prevalence, awareness, treatment, and control[J]. Popul Health Metr, 2014, 12(1): 28. DOI: 10.1186/s12963-014-0028-7.
    [14]
    Liu X, Li Y, Li L, et al. Prevalence, awareness, treatment, control of type 2 diabetes mellitus and risk factors in Chinese rural population: the RuralDiab study[J]. Sci Rep, 2016, 6(1): 31426. DOI: 10.1038/srep31426.
    [15]
    Huang X, Zhou Z, Liu J, et al. Prevalence, awareness, treatment, and control of hypertension among China's Sichuan Tibetan population: a cross-sectional study[J]. Clin Exp Hypertens, 2016, 38(5): 457. DOI: 10.3109/10641963.2016.1163369.
    [16]
    Koch D, Eisinger RS, Gebharter A. A causal Bayesian network model of disease progression mechanisms in chronic myeloid leukemia [J]. J Theor Biol, 2017, 433: 94-105. DOI: 10.1016/j.jtbi.2017.08.023.
    [17]
    姚洁. 基于启发式搜索的贝叶斯网络结构学习研究[D]. 浙江: 浙江师范大学, 2016.

    Yao J. Research on structural learning based on heuristic search in Bayesian networks [D]. Zhejiang: Zhejiang Normal University, 2016.
    [18]
    Stajduhar I, Dalbelo-Basic B, Bogunovic N. Impact of censoring on learning Bayesian networks in survival modelling [J]. Artif Intell Med, 2009, 47(3): 199-217. DOI: 10.1016/j.artmed.2009.08.001.
    [19]
    陈璐, 陈适, 许可, 等. 糖尿病患者行为方式与血糖控制关系[J]. 中国公共卫生, 2017, 33(10): 1501-1503. DOI: 10.11847/zgggws2017-33-10-21.

    Chen L, Chen S, Xu K, et al. Relationship between behavior style and glycemic control in diabetic patients [J]. Chin J Publ Heal, 2017, 33(10): 1501-1503. DOI: 10.11847/zgggws2017-33-10-21.
    [20]
    陈名道. 胰岛β细胞的"糖毒性"、"脂毒性"与"糖脂毒性" [J]. 中华内分泌代谢杂志, 2009, 25(1): 5-8. DOI: 10.3760/cma.j.issn.1000-6699.2009.01.002.

    Chen DM. Effects of "glucotoxicity", "lipotoxicity" and "glucolipotoxicity" on islet β-cells [J]. Chin J Endocrinol Metab, 2009, 25(1): 5-8. DOI: 10.3760/cma.j.issn.1000-6699.2009.01.002.
    [21]
    李碧汐, 李耘, 刘力松. 高血压病合并高尿酸血症与2型糖尿病的相关性研究[J]. 心肺血管病杂志, 2019, 38(8): 830-832, 837. DOI: 10.3969/j.issn.1007-5062.2019.08.003.

    Li BX, Li Y, Liu LS, Relationship between hypertension complicated with hyperuricemia and type 2 diabetes mellitus [J]. Journal of Cardiovascular and Pulmonary Diseases, 2019, 38(8): 830-832, 837. DOI: 10.3969/j.issn.1007-5062.2019.08.003.
    [22]
    王维波, 李振卿, 王继美, 等. 2型糖尿病合并高血压、血脂异常住院患者的药学科普干预研究[J]. 中国药师, 2019, 22(8): 1464-1467. DOI: 10.3969/j.issn.1008-049X.2019.08.021.

    Wang WB, Li ZQ, Wang JM, et al. Effects of pharmaceutical science intervention service in type 2 diabetes patients with hypertension and dyslipidemia [J]. China Pharmacist, 2019, 22(8): 1464-1467. DOI: 10.3969/j.issn.1008-049X.2019.08.021.
    [23]
    Zhou X, Ji L, Luo Y, et al. Risk factors associated with the presence of diabetes in Chinese communities in Beijing [J]. Diabetes Res Clin Pract, 2009, 86(3): 233-238. DOI: 10.1016/j.diabres.2009.09.014.
    [24]
    潘磊磊, 卢春明, 吴明, 等. 辽宁省35~75岁居民糖尿病患病率及影响因素[J]. 中华疾病控制杂志, 2020, 24(6): 670-675. DOI: 10.16462/j.cnki.zhjbkz.2020.06.010.

    Pan LL, Lu CM, Wu M, et al. Analysis on the diabetes prevalence and its influencing factors in population aged 35-75 years in Liaoning Province [J]. Chin J Dis Control Prev, 2020, 24(6): 670-675. DOI: 10.16462/j.cnki.zhjbkz.2020.06.010.
    [25]
    梁森, 韩冰, 范雷, 等. 河南省35~74岁人群糖尿病患病率及相关因素分析[J]. 中华疾病控制杂志, 2018, 22(6): 569-572, 589. DOI: 10.16462/j.cnki.zhjbkz.2018.06.007.

    Liang S, Han B, Fan L, et al. Prevalence of diabetes mellitus and associated risk factors in population aged 35-74 years in Henan Province [J]. Chin J Dis Control Prev, 2018, 22(6): 569-572, 589. DOI: 10.16462/j.cnki.zhjbkz.2018.06.007.
    [26]
    刘先锋. 重庆市高脂血症患病率及影响因素研究[D]. 重庆: 重庆医科大学, 2007.

    Liu XF. Analysis on prevalence and factors related to hyperlipidemia in Chongqing [D]. Chongqing: Chongqing Medical University, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (748) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return