Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 26 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
QIN Jia-jie, CHEN Cong, GUAN Jing, LIU Wei. Prediction for the outpatient amount of childhood common respiratory diseases based on multivariate LSTM model with lag effect[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(9): 1057-1064. doi: 10.16462/j.cnki.zhjbkz.2022.09.012
Citation: QIN Jia-jie, CHEN Cong, GUAN Jing, LIU Wei. Prediction for the outpatient amount of childhood common respiratory diseases based on multivariate LSTM model with lag effect[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(9): 1057-1064. doi: 10.16462/j.cnki.zhjbkz.2022.09.012

Prediction for the outpatient amount of childhood common respiratory diseases based on multivariate LSTM model with lag effect

doi: 10.16462/j.cnki.zhjbkz.2022.09.012
Funds:

National Natural Science Foundation of China 72174138

National Natural Science Foundation of Tianjin, China 20JCZDJC00660

More Information
  • Corresponding author: GUAN Jing, E-mail: guanjing@tju.edu.cn; LIU Wei, E-mail: Lance1971@163.com
  • Received Date: 2021-12-31
  • Rev Recd Date: 2022-04-27
  • Available Online: 2022-09-17
  • Publish Date: 2022-09-10
  •   Objective  To construct the prediction model of the daily outpatient amount of childhood common respiratory diseases and analyze the trend of the outpatient amount in the future, which will provide data support for the scientific prevention and control of common respiratory diseases in children.  Methods  Based on the daily outpatient cases of a hospital and meteorological and air pollutant data from January 1, 2017 to December 31 2019, the distributed lag nonlinear model (DLNM) was used to analyze the influence and lag effect of average daily temperature and pollutant concentration on the daily outpatient amount in spring and autumn semesters.A multivariate long and short-term memory (LSTM) model was constructed to predict daily outpatient amounts in the spring and autumn semesters.  Results  The median average daily temperature in the spring and autumn semesters was selected for research, and we found that the impact of average daily temperature on the daily outpatient amount in the autumn semester lagged 7 days and lasted for about 10 days, while the effect on the spring semester was immediate and lasted for about 4 days.The multivariate LSTM model combined with the lag effect can predict daily outpatient amount in spring and autumn semesters well, the mean absolute percentage error (MAPE) on the test set was 4.59% and 4.77%, respectively.  Conclusion  The multivariate LSTM model combined with the lag effect can accurately predict the daily outpatient amount, which provides a scientific basis for the prevention and control of diseases.
  • loading
  • [1]
    田文华, 彭希哲, 梁鸿. 城市空气污染造成儿童健康经济损失的研究[J]. 中国卫生经济, 2002, 21(10): 16-17. DOI: 10.3969/j.issn.1003-0743.2002.10.006.

    Tian WH, Peng XZ, Liang H. A study on the health-economic loss of children due to the air pollution in City[J]. Chinese Health Economics, 2002, 21(10): 16-17. DOI: 10.3969/j.issn.1003-0743.2002.10.006.
    [2]
    孙丽萍, 周丹, 王彩霞, 等. 2013-2017年某三级综合医院儿童法定传染病流行特征[J]. 中国感染控制杂志, 2019, 18(2): 153-157. DOI: 10.12138/j.issn.1671-9638.20193910.

    Sun LP, Zhou D, Wang CX, et al. Epidemic features of notifiable infectious diseases among children in a tertiary general hospital, 2013-2017[J]. Chin J Infect Control, 2019, 18(2): 153-157. DOI: 10.12138/j.issn.1671-9638.20193910.
    [3]
    秦小平, 王传清, 王荔, 等. 儿童医院应对新型冠状病毒感染肺炎疫情的防控能力调查分析[J]. 中华医院感染学杂志, 2020, 30(11): 1606-1609. DOI: 10.11816/cn.ni.2020-200296.

    Qin XP, Wang CQ, Wang L, et al. Investigation and analysis of children's hospital's prevention and control ability against COVID-19[J]. Chin J Nosocomiol, 2020, 30(11): 1606-1609. DOI: 10.11816/cn.ni.2020-200296.
    [4]
    廖华龙, 曾小茜, 李华凤, 等. 机器学习在疾病预测中的应用[J]. 生物医学工程研究, 2021, 40(2): 203-209. DOI: 10.19529/j.cnki.1672-6278.2021.02.17.

    Liao HL, Zeng XQ, Li HF, et al. Application of machine learning in disease prediction[J]. Journal of Biomedical Engineering Research, 2021, 40(2): 203-209. DOI: 10.19529/j.cnki.1672-6278.2021.02.17.
    [5]
    李顺勇, 张钰嘉. LSTM和Prophet模型在肺结核发病数预测中的应用[J]. 河南科学, 2020, 38(2): 173-178. DOI: 10.3969/j.issn.1004-3918.2020.02.001.

    Li SY, Zhang YJ. Application of LSTM and Prophet Models in Predicting the Number of Tuberculosis Cases[J]. Henan Sci, 2020, 38(2): 173-178. DOI: 10.3969/j.issn.1004-3918.2020.02.001.
    [6]
    徐佩, 樊重俊, 朱人杰, 等. 基于Prophet-LSTM-PSO组合模型的医院住院量预测研究[J]. 上海理工大学学报, 2021, 43(1): 68-72. DOI: 10.13255/j.cnki.jusst.20200308003.

    Xu P, Fan CJ, Zhu RJ, et al. Prediction of hospital inpatients based on combined Prophet-LSTM-PSO model[J]. J Univ Shanghai for Sci Technol, 2021, 43(1): 68-72. DOI: 10.13255/j.cnki.jusst.20200308003.
    [7]
    高秋菊, 周宇畅, 赵树青, 等. ARIMA乘积季节模型和LSTM深度神经网络对石家庄市手足口病疫情预测效果的比较[J]. 中华疾病控制杂志, 2020, 24(1): 73-78. DOI: 10.16462/j.cnki.zhjbkz.2020.01.015.

    Gao QJ, Zhou YC, Zhao SQ, et al. Comparison on predictive capacity of ARIMA model and LSTM model for incidence of hand, foot and mouth disease in Shijiazhuang[J]. Chin J Dis Control Prev, 2020, 24(1): 73-78. DOI: 10.16462/j.cnki.zhjbkz.2020.01.015.cnki.zhjbkz.2020.01.015.
    [8]
    洪也, 张莹, 马雁军, 等. 沈阳大气污染物与气象因素对呼吸疾病门诊数的影响[J]. 中国环境科学, 2020, 40(9): 4077-4090. DOI: 10.19674/j.cnki.issn1000-6923.2020.0454.

    Hong Y, Zhang Y, Ma YJ, et al. Effects of air pollutants and meteorological factors on outpatient visitors for respiratory diseases in Shenyang[J]. China Environmental Science, 2020, 40(9): 4077-4090. DOI: 10.19674/j.cnki.issn1000-6923.2020.0454.
    [9]
    孙凤霞, 熊丽林, 杨华凤, 等. 2013-2019年南京市大气PM2.5短期暴露对人群超额死亡风险评估[J]. 中华疾病控制杂志, 2021, 25(11): 1257-1263. DOI: 10.16462/j.cnki.zhjbkz.2021.11.004.

    Sun FX, Xiong LL, Yang HF, et al. Assessing the excess mortality related to short-term exposure to PM2.5 in Nanjing from 2013 to 2019[J]. Chin J Dis Control Prev, 2021, 25(11): 1257-1263. DOI: 10.16462/j.cnki.zhjbkz.2021.11.004.
    [10]
    Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models[J]. Stat Med, 2010, 29(21): 2224-2234. DOI: 10.1002/sim.3940.
    [11]
    朱晓娟. 基于机器学习的健康风险评估与预测[D]. 成都: 电子科技大学, 2020.

    Zhu XJ. Health Risk Assessment and Prediction Based on Machine Learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
    [12]
    黄钰姝, 宋和佳, 张睿, 等. ARIMAX与多变量LSTM模型在盐城市总死亡人数预测中的比较研究[J]. 公共卫生与预防医学, 2021, 32(5): 6-10. DOI: 10.3969/j.issn.1006-2483.2021.05.002.

    Huang YS, Song HJ, Zhang R, et al. Comparison of ARIMAX and multivariate LSTM model in predicting daily death toll in Yancheng City[J]. J Pub Health Prev Med, 2021, 32(5): 6-10. DOI: 10.3969/j.issn.1006-2483.2021.05.002.
    [13]
    龚风云, 王凯. 基于LSTM神经网络的乌鲁木齐市流感样病例的预测研究[J]. 科技视界, 2019, 1(31): 20-22. DOI: 10.19694/j.cnki.issn2095-2457.2019.31.009.

    Gong FY, Wang K. Prediction of influenza-like cases in urumqi based on LSTM neural network[J]. Science & Technology Vision, 2019, 1(31): 20-22. DOI: 10.19694/j.cnki.issn2095-2457.2019.31.009.
    [14]
    乐满, 王式功, 谢佳君, 等. 环境条件对遵义市呼吸系统疾病的影响及预测研究[J]. 中国环境科学, 2018, 38(11): 4334-4347. DOI: 10.19674/j.cnki.issn1000-6923.2018.0484.

    Yue M, Wang SG, Xie JJ, et al. Study about the impact of environmental conditions on respiratory diseases and prediction in Zunyi City[J]. China Environmental Science, 2018, 38(11): 4334-4347. DOI: 10.19674/j.cnki.issn1000-6923.2018.0484.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (944) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return