Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 26 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
WANG Yu-ting, TAO Bi-lin, LI Zhong-qi, WU Ji-zhou, DING Jie, WANG Jian-ming. Global geographical pedigree distribution and drug resistance of Mycobacterium tuberculosis complex[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(11): 1248-1251. doi: 10.16462/j.cnki.zhjbkz.2022.11.002
Citation: WANG Yu-ting, TAO Bi-lin, LI Zhong-qi, WU Ji-zhou, DING Jie, WANG Jian-ming. Global geographical pedigree distribution and drug resistance of Mycobacterium tuberculosis complex[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(11): 1248-1251. doi: 10.16462/j.cnki.zhjbkz.2022.11.002

Global geographical pedigree distribution and drug resistance of Mycobacterium tuberculosis complex

doi: 10.16462/j.cnki.zhjbkz.2022.11.002
Funds:

National Natural Science Foundation of China 81973103

Medical Research Project of Jiangsu Health Commission ZDB2020013

Nanjing Major Science and Technology Project 2021-11005

More Information
  • Corresponding author: WANG Jian-ming, E-mail: jmwang@njmu.edu.cn
  • Received Date: 2022-03-28
  • Rev Recd Date: 2022-06-12
  • Available Online: 2022-12-21
  • Publish Date: 2022-11-10
  •   Objective  To map the global geographical distribution of Mycobacterium tuberculosis complex (MTBC) and describe the main MTBC lineage and drug resistance in different regions.  Methods  We used the whole-genome sequencing data from the TB-profiler platform to plot the global MTBC distribution map and visualized it according to the hierarchical structure of different regions and sub-lineages.  Results  Lineage 4 was widely distributed worldwide, while lineage 2 had the highest risk of drug resistance.  Conclusions  There was a significantly different geographic distribution pattern and drug resistance of MTBC lineages worldwide.
  • loading
  • [1]
    WHO. Clobal tuberculosis report 2021[EB/OL]. (2021-10-14)[2022-03-01]. i.
    [2]
    Merker M, Kohl TA, Niemann S, et al. The evolution of strain typing in the Mycobacterium tuberculosis complex[J]. Adv Exp Med Biol, 2017, 1019: 43-78. DOI: 10.1007/978-3-319-64371-7_3.
    [3]
    Rivière E, Heupink TH, Ismail N, et al. Capacity building for whole genome sequencing of Mycobacterium tuberculosis and bioinformatics in high TB burden countries[J]. Brief Bioinform, 2021, 22(4): bbaa246. DOI: 10.1093/bib/bbaa246.
    [4]
    Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges[J]. Genome Med, 2019, 11(1): 45. DOI: 10.1186/s13073-019-0660-8.
    [5]
    Gröschel MI, Owens M, Freschi L, et al. GenTB: a user-friendly genome-based predictor for tuberculosis resistance powered by machine learning[J]. Genome Med, 2021, 13(1): 138. DOI: 10.1186/s13073-021-00953-4.
    [6]
    Blower SM, Chou T. Modeling the emergence of the 'hot zones': tuberculosis and the amplification dynamics of drug resistance[J]. Nat Med, 2004, 10(10): 1111-1116. DOI: 10.1038/nm1102.
    [7]
    Vasilyeva I, Mariandyshev A, Kazennyy B, et al. Early access to bedaquiline for extensively drug-resistant (XDR) and pre-XDR tuberculosis[J]. Eur Respir J, 2019, 54(1): 1802208. DOI: 10.1183/13993003.02208-2018.
    [8]
    Phelan JE, O'Sullivan DM, Machado D, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs[J]. Genome Med, 2019, 11(1): 41. DOI: 10.1186/s13073-019-0650-x.
    [9]
    Comas I, Coscolla M, Luo T, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans[J]. Nat Genet, 2013, 45(10): 1176-1182. DOI: 10.1038/ng.2744.
    [10]
    Hershberg R, Lipatov M, Small PM, et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography[J]. PLoS Biol, 2008, 6(12): e311. DOI: 10.1371/journal.pbio.0060311.
    [11]
    Barbier M, Wirth T. The evolutionary history, demography, and spread of the Mycobacterium tuberculosis complex[J]. Microbiol Spectr, 2016, 4(4). DOI: 10.1128/microbiolspec.TBTB2-0008-2016.
    [12]
    Ford CB, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis[J]. Nat Genet, 2013, 45(7): 784-790. DOI: 10.1038/ng.2656.
    [13]
    Hakamata M, Takihara H, Iwamoto T, et al. Higher genome mutation rates of Beijing lineage of Mycobacterium tuberculosis during human infection[J]. Sci Rep, 2020, 10(1): 179-197. DOI: 10.1038/s41598-020-75028-2.
    [14]
    Gygli SM, Borrell S, Trauner A, et al. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives[J]. FEMS Microbiol Rev, 2017, 41(3): 354-373. DOI: 10.1093/femsre/fux011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (884) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return