Citation: | WANG Yu-ting, TAO Bi-lin, LI Zhong-qi, WU Ji-zhou, DING Jie, WANG Jian-ming. Global geographical pedigree distribution and drug resistance of Mycobacterium tuberculosis complex[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(11): 1248-1251. doi: 10.16462/j.cnki.zhjbkz.2022.11.002 |
[1] |
WHO. Clobal tuberculosis report 2021[EB/OL]. (2021-10-14)[2022-03-01]. i.
|
[2] |
Merker M, Kohl TA, Niemann S, et al. The evolution of strain typing in the Mycobacterium tuberculosis complex[J]. Adv Exp Med Biol, 2017, 1019: 43-78. DOI: 10.1007/978-3-319-64371-7_3.
|
[3] |
Rivière E, Heupink TH, Ismail N, et al. Capacity building for whole genome sequencing of Mycobacterium tuberculosis and bioinformatics in high TB burden countries[J]. Brief Bioinform, 2021, 22(4): bbaa246. DOI: 10.1093/bib/bbaa246.
|
[4] |
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges[J]. Genome Med, 2019, 11(1): 45. DOI: 10.1186/s13073-019-0660-8.
|
[5] |
Gröschel MI, Owens M, Freschi L, et al. GenTB: a user-friendly genome-based predictor for tuberculosis resistance powered by machine learning[J]. Genome Med, 2021, 13(1): 138. DOI: 10.1186/s13073-021-00953-4.
|
[6] |
Blower SM, Chou T. Modeling the emergence of the 'hot zones': tuberculosis and the amplification dynamics of drug resistance[J]. Nat Med, 2004, 10(10): 1111-1116. DOI: 10.1038/nm1102.
|
[7] |
Vasilyeva I, Mariandyshev A, Kazennyy B, et al. Early access to bedaquiline for extensively drug-resistant (XDR) and pre-XDR tuberculosis[J]. Eur Respir J, 2019, 54(1): 1802208. DOI: 10.1183/13993003.02208-2018.
|
[8] |
Phelan JE, O'Sullivan DM, Machado D, et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs[J]. Genome Med, 2019, 11(1): 41. DOI: 10.1186/s13073-019-0650-x.
|
[9] |
Comas I, Coscolla M, Luo T, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans[J]. Nat Genet, 2013, 45(10): 1176-1182. DOI: 10.1038/ng.2744.
|
[10] |
Hershberg R, Lipatov M, Small PM, et al. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography[J]. PLoS Biol, 2008, 6(12): e311. DOI: 10.1371/journal.pbio.0060311.
|
[11] |
Barbier M, Wirth T. The evolutionary history, demography, and spread of the Mycobacterium tuberculosis complex[J]. Microbiol Spectr, 2016, 4(4). DOI: 10.1128/microbiolspec.TBTB2-0008-2016.
|
[12] |
Ford CB, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis[J]. Nat Genet, 2013, 45(7): 784-790. DOI: 10.1038/ng.2656.
|
[13] |
Hakamata M, Takihara H, Iwamoto T, et al. Higher genome mutation rates of Beijing lineage of Mycobacterium tuberculosis during human infection[J]. Sci Rep, 2020, 10(1): 179-197. DOI: 10.1038/s41598-020-75028-2.
|
[14] |
Gygli SM, Borrell S, Trauner A, et al. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives[J]. FEMS Microbiol Rev, 2017, 41(3): 354-373. DOI: 10.1093/femsre/fux011.
|