Advanced Search

CN 34-1304/RISSN 1674-3679

JIANG Yuan-dong, TENG Zi-hao, WANG Yue, HU Peng-yuan, XIANG Yang. Trend of tuberculosis incidence in China from 1990 to 2019 based on the age-period-cohort model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(11): 1275-1282. doi: 10.16462/j.cnki.zhjbkz.2022.11.007
Citation: JIANG Yuan-dong, TENG Zi-hao, WANG Yue, HU Peng-yuan, XIANG Yang. Trend of tuberculosis incidence in China from 1990 to 2019 based on the age-period-cohort model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(11): 1275-1282. doi: 10.16462/j.cnki.zhjbkz.2022.11.007

Trend of tuberculosis incidence in China from 1990 to 2019 based on the age-period-cohort model

doi: 10.16462/j.cnki.zhjbkz.2022.11.007
Funds:

National Natural Science Foundation of China 81860589

State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia Fund SKL-HIDCA-2020-ER5

More Information
  • Corresponding author: XIANG Yang, E-mail: 893664450@qq.com
  • Received Date: 2021-11-23
  • Rev Recd Date: 2022-04-14
  • Available Online: 2022-12-21
  • Publish Date: 2022-11-10
  •   Objective  To analyze the trend of tuberculosis incidence in China in 1990-2019 and to explore the impact of age, period and cohort on tuberculosis risk.  Methods  The global health data exchange database was used to collect tuberculosis incidence data from Chinese residents aged 0- < 95 years old. Joinpoint regression was used to analyze the changing trend of tuberculosis incidence in China from 1990 to 2019. The age-period-cohort model was used to analyze the age effect, period effect and cohort effect on the risk of tuberculosis in China.  Results  From 1990 to 2019, the standardized incidence of tuberculosis showed a downward trend in the whole population and in the subgroups of males and females. The age-standardized incidence rate decreased from 120.56/100 000 and 99.75/100 000 in 1990 to 56.08/100 000 and 30.60/100 000 in 2019, with an average annual decline rate of 2.60% and 3.98%, respectively. The results of the age-period-cohort model analysis showed that the age effect of tuberculosis incidence in China increased with age from 1990 to 2019, and reached the highest risk at the age of 90- < 95 years old. The RR of males and females were 2.50 (95% CI: 2.33-2.69) and 1.93 (95% CI: 1.76-2.12), respectively. The period effect gradually decreased with the passage of time, and the RR value of incidence risk decreased from [male: 1.13 (95% CI: 1.08-1.17); female: 1.58 (95% CI: 1.51-1.65)] in 1990 to [male: 0.80 (95% CI: 0.76-0.83); female: 0.61 (95% CI: 0.57-0.65)] in 2019. The cohort effect showed that people who were born later have a lower risk of developing the disease.  Conclusions  The incidence of tuberculosis in China showed a downward trend from 1990 to 2019. On the whole, the risk of tuberculosis increased with the increase in age. The farther away from the contemporary period, the higher the risk of people being born earlier. It is suggested that TB screening should be focused on infants, college students, men, the elderly, and other groups. Colleges and universities across the country should carry out more lectures on TB health knowledge, and relevant government departments should use a variety of ways to publicize TB health knowledge to the public.
  • [1]
    Buzic I, Giuffra V. The paleopathological evidence on the origins of human tuberculosis: a review[J]. J Prev Med Hyg, 2020, 61(1 Suppl 1): E3-E8. DOI: 10.15167/2421-4248/jpmh2020.61.1s1.1379.
    [2]
    Wang LX, Zhang H, Ruan YZ, et al. Tuberculosis prevalence in China, 1990-2010: a longitudinal analysis of national survey data[J]. Lancet, 2014, 383(9934): 2057-2064. DOI: 10.1016/S0140-6736(13)62639-2.
    [3]
    Zuo ZB, Wang MC, Cui HZ, et al. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system[J]. BMC Public Health, 2020, 20(1): 1284. DOI: 10.1186/s12889-020-09331-y.
    [4]
    任坦坦, 陆普选, 邓国防, 等. 2020 WHO全球结核报告: 全球与中国关键数据分析[J]. 新发传染病电子杂志, 2020, 5(4): 280-284. DOI: 10.19871/j.cnki.xfcrbzz.2020.04.015.

    Ren TT, Lu PX, Deng GF, et al. 2020 WHO tuberculosis report: key data for China and the whole world[J]. Electronic Journal of Emerging Infectious Diseases, 2020, 5(4): 280-284. DOI: 10.19871/j.cnki.xfcrbzz.2020.04.015.
    [5]
    WHO. Global tuberculosis report 2021[EB/OL]. (2021-10-14)[2021-10-31]. https://www.who.int/publications/digital/global-tuberculosis-report-2021.
    [6]
    Meira KC, Silva GWDS, dos Santos J, et al. Analysis of the effects of the age-period-birth cohort on cervical cancer mortality in the Brazilian Northeast[J]. PLoS One, 2020, 15(2): e0226258. DOI: 10.1371/journal.pone.0226258.
    [7]
    GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 Countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222. DOI: 10.1016/S0140-6736(20)30925-9.
    [8]
    Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204): 1145-1158. DOI: 10.1016/S0140-6736(19)30427-1.
    [9]
    屈彦, 王天一, 杨津, 等. GBD数据库的数据提取方法与流程[J]. 中国循证心血管医学杂志, 2019, 11(9): 1043-1046. DOI: 10.3969/j.issn.1674-4055.2019.09.04.

    Qu Y, Wang TY, Yang J, et al. GBD database application and data extraction methods and processes[J]. Chin J Evid Based Cardiovasc Med, 2019, 11(9):1043-1046. DOI: 10.3969/j.issn.1674-4055.2019.09.04.DOI:10.3969/j.issn.1674-4055.2019.09.04.
    [10]
    GBD 2019 Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 Countries and territories, 1950-2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1160-1203. DOI: 10.1016/S0140-6736(20)30977-6.
    [11]
    曾四清. Joinpoint回归模型及其在传染病流行趋势分析中的应用[J]. 中国卫生统计, 2019, 36(5): 787-791. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201905044.htm

    Zeng SQ. Joinpoint regression model and its application in epidemic trend analysis of infectious diseases[J]. Chin J Heal Stat, 2019, 36(5): 787-791. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWT201905044.htm
    [12]
    Yang Y, Fu WJ, Land KC. A methodological comparison of age-period-cohort models: the intrinsic estimator and conventional generalized linear models[J]. Sociol Methodol, 2004, 34(1): 75-110. DOI: 10.1111/j.0081-1750.2004.00148.x.
    [13]
    Yang Y. Trends in U.S. adult chronic disease mortality, 1960-1999: age, period, and cohort variations[J]. Demography, 2008, 45(2): 387-416. DOI: 10.1353/dem.0.0000.
    [14]
    Donald PR, Marais BJ, Barry CE 3rd. Age and the epidemiology and pathogenesis of tuberculosis[J]. Lancet, 2010, 375(9729): 1852-1854. DOI: 10.1016/S0140-6736(10)60580-6.
    [15]
    Fernandes P, Ma Y, Gaeddert M, et al. Sex and age differences in Mycobacterium tuberculosis infection in Brazil[J]. Epidemiol Infect, 2018, 146(12): 1503-1510. DOI: 10.1017/S0950268818001450.
    [16]
    姚晶, 顾凯侃, 李智红, 等. 2014-2019年上海市静安区老年与非老年肺结核流行特征对比分析[J]. 中国防痨杂志, 2020, 42(12): 1323-1328. DOI: 10.3969/j.issn.1000-6621.2020.12.014.

    Yao J, Gu KK, Li ZH, et al. A comparative analysis of the epidemic characteristics of tuberculosis in elderly and non-elderly in Jing'an District, Shanghai from 2014 to 2019[J]. Chin J Antituberc, 2020, 42(12): 1323-1328. DOI: 10.3969/j.issn.1000-6621.2020.12.014.
    [17]
    Gavazzi G, Krause KH. Ageing and infection[J]. Lancet Infect Dis, 2002, 2(11): 659-666. DOI: 10.1016/s1473-3099(02)00437-1.
    [18]
    Fischer J, Jung N, Robinson N, et al. Sex differences in immune responses to infectious diseases[J]. Infection, 2015, 43(4): 399-403. DOI: 10.1007/s15010-015-0791-9.
    [19]
    何志青, 胡贵方, 资青兰, 等. 影响男性肺结核发病的相关因素探讨[J]. 实用医学杂志, 2012, 28(23): 3905-3907. DOI: 10.3969/j.issn.1006-5725.2012.23.019.

    He ZQ, Hu GF, Zi QL, et al. Study on the related factors affecting the incidence of male pulmonary tuberculosis[J]. The J Pract Med, 2012, 28(23): 3905-3907. DOI: 10.3969/j.issn.1006-5725.2012.23.019.
    [20]
    Carvalho ACC, Cardoso CAA, Martire TM, et al. Epidemiological aspects, clinical manifestations, and prevention of pediatric tuberculosis from the perspective of the End TB Strategy[J]. J Bras Pneumol, 2018, 44(2): 134-144. DOI: 10.1590/s1806-37562017000000461.
    [21]
    王文琴, 梁日成, 余小华, 等. 大学生群体肺结核患病的流行病学研究, 以广西大学大学生为研究案例[J]. 基因组学与应用生物学, 2017, 36(6): 2248-2254. DOI: 10.13417/j.gab.036.002248.

    Wang WQ, Liang RC, Yu XH, et al. Epidemiological study of pulmonary tuberculosis among college students, case study of students in Guangxi University[J]. Genom Appl Biol, 2017, 36(6): 2248-2254. DOI: 10.13417/j.gab.036.002248.
    [22]
    陆伟, 周扬, 刘剑君. 新中国成立70年来我国结核病防治工作的进展与成就[J]. 中华疾病控制杂志, 2019, 23(7): 754-757, 762. DOI: 10.16462/j.cnki.zhjbkz.2019.07.003.

    Lu W, Zhou Y, Liu JJ. The progress and achievements of tuberculosis control in China since 1949[J]. Chin J Dis Control Prev, 2019, 23(7): 754-757, 762. DOI: 10.16462/j.cnki.zhjbkz.2019.07.003.
    [23]
    Davenport RJ. Year of birth effects in the historical decline of tuberculosis mortality: a reconsideration[J]. PLoS One, 2013, 8(12): e81797. DOI: 10.1371/journal.pone.0081797.
    [24]
    吴影桃, 柳莉, 严翠婷, 等. 基于微信平台健康教育对社区非肺结核人群普及预防肺结核知识的效果研究[J]. 中国医药指南, 2020, 18(13): 294-295. DOI: 10.15912/j.cnki.gocm.2020.13.140.

    Wu YT, Liu L, Yan CT, et al. Study on the effect of health education based on wechat platform on the popularization of tuberculosis prevention knowledge among non tuberculosis population in community[J]. Guide of China Medicine, 2020, 18(13): 294-295. DOI: 10.15912/j.cnki.gocm.2020.13.140.
    [25]
    余巧林, 雷丽梅, 万彬, 等. 结核病患者健康素养与结核病防治核心知识和社会支持的相关性[J]. 中国防痨杂志, 2020, 42(11): 1227-1231. DOI: 10.3969/j.issn.1000-6621.2020.11.015.

    Yu QL, Lei LM, Wan B, et al. Correlation between health literacy of tuberculosis patients and core knowledge and social support of tuberculosis control[J]. Chin J Antitubercul, 2020, 42(11): 1227-1231. DOI: 10.3969/j.issn.1000-6621.2020.11.015.
    [26]
    Wang LQ, Wang WB. Temporal trends in notification and mortality of tuberculosis in China, 2004-2019: a joinpoint and age-period-cohort analysis[J]. Int J Environ Res Public Health, 2021, 18(11): 5607. DOI: 10.3390/ijerph18115607.
  • Relative Articles

  • Cited by

    Periodical cited type(12)

    1. 王容侠,周晓敏,刘兰芳,刘可,崔泓,李海霞,王雨彤. 2011—2022年十堰市结核病流行特征分析. 医学动物防制. 2025(03): 277-280 .
    2. 张晓琳,杜国平,陈笑艳,李小杉,卫艺璇,李妍慧,谈冰心,叶雨秀. 江苏籍大一新生2019—2022年三大传染病知识态度行为状况. 中国学校卫生. 2025(02): 205-209 .
    3. 陈海英,樊慧,杨洋,杜文哲,郝长付. 1990-2019年中国儿童青少年哮喘发病率与死亡率变化趋势分析. 郑州大学学报(医学版). 2025(02): 216-220 .
    4. 王兰兰,刘广超,李小凡,郝建萍. 1990-2019年中国白血病发病率与死亡率年龄-时期-队列分析. 现代肿瘤医学. 2024(07): 1334-1340 .
    5. 蔡迎彬,刘广超,梁智超,地力亚尔·吾斯曼江,张闻烙,王岩. 2002-2021年中国城乡居民胃癌死亡趋势年龄-时期-队列模型分析. 中华肿瘤防治杂志. 2024(08): 478-485 .
    6. 郭朝阳,李荣振,刘胜超,刘慧莹,郭莹莹,贾光耀. 1990—2019年中国居民腹股沟疝、股疝和腹疝发病趋势及年龄-时期-队列模型分析. 现代疾病预防控制. 2024(04): 297-302 .
    7. 李青松,赵聪平,刘静,杨均,燕思羽,张银河. CRISPR-Cas13a系统在病原体检测应用中的最新研究进展. 现代检验医学杂志. 2024(03): 199-204 .
    8. 杜国平,陈笑艳,吕玉梅,李小杉,谈冰心,李妍慧,叶雨秀,卫艺璇,张云骋. 江苏籍大一新生2019—2022年结核病知识行为变化趋势及相关因素分析. 中国学校卫生. 2024(08): 1120-1125 .
    9. 张亚欣,贾生青,王兆芬,王兴斌,杨得杰,赵昌明. 2006—2020年海东市结核病发病的年龄-时期-队列分析. 预防医学. 2024(12): 1052-1055+1059 .
    10. 施育珍. 结核菌素试验反应的原因分析及护理干预对策. 黑龙江中医药. 2023(01): 272-274 .
    11. 郑伟,张世勇,杨纶砥,熊华利. 基于年龄-时期-队列模型的1990—2019年我国艾滋病发病率趋势分析. 预防医学. 2023(08): 665-668+681 .
    12. 犹忆,李德俊,裴一霖,谢铌奇. 1990—2019年中国结直肠癌死亡趋势及年龄-时期-队列模型分析. 现代预防医学. 2023(18): 3281-3287 .

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (1047) PDF downloads(135) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return