Citation: | WANG Yuan-zhou, JIA Si-yue, ZHU Feng-cai, LI Jing-xin. Strategy for COVID-19 vaccination for patients with tuberculosis during the COVID-19 pandemic[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(11): 1344-1348. doi: 10.16462/j.cnki.zhjbkz.2022.11.018 |
[1] |
Teijaro JR, Farber DL. COVID-19 vaccines: modes of immune activation and future challenges[J]. Nat Rev Immunol, 2021, 21(4): 195-197. DOI: 10.1038/s41577-021-00526-x.
|
[2] |
WHO. WHO Coronavirus (COVID-19) dashboard[EB/OL]. (2022-02-21)[2022-03-09]. https://covid19.who.int/.
|
[3] |
Creech CB, Walker SC, Samuels RJ. SARS-CoV-2 vaccines[J]. JAMA, 2021, 325(13): 1318-1320. DOI: 10.1001/jama.2021.3199.
|
[4] |
Tanriover MD, Doganay HL, Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey[J]. Lancet, 2021, 398(10296): 213-222. DOI: 10.1016/S0140-6736(21)01429-X.
|
[5] |
Jara A, Undurraga EA, González C, et al. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile[J]. N Engl J Med, 2021, 385(10): 875-884. DOI: 10.1056/NEJMoa2107715.
|
[6] |
Fadlyana E, Rusmil K, Tarigan R, et al. A phase Ⅲ, observer-blind, randomized, placebo-controlled study of the efficacy, safety, and immunogenicity of SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years: An interim analysis in Indonesia[J]. Vaccine, 2021, 39(44): 6520-6528. DOI: 10.1016/j.vaccine.2021.09.052.
|
[7] |
WHO. Global tuberculosis report 2021[EB/OL]. (2021-10-14) [2022-03-09]. https://www.who.int/publications/i/item/9789240037021.
|
[8] |
Tadolini M, Codecasa LR, García-García JM, et al. Active tuberculosis, sequelae and COVID-19 co-infection: first cohort of 49 cases[J]. Eur Respir J, 2020, 56(1): 2001398. DOI: 10.1183/13993003.01398-2020.
|
[9] |
Drain PK, Bajema KL, Dowdy D, et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection[J]. Clin Microbiol Rev, 2018, 31(4): e00021-e00018. DOI: 10.1128/CMR.00021-18.
|
[10] |
Shah M, Dorman SE. Latent tuberculosis infection[J]. N Engl J Med, 2021, 385(24): 2271-2280. DOI: 10.1056/NEJMcp2108501.
|
[11] |
Furin J, Cox H, Pai M. Tuberculosis[J]. Lancet, 2019, 393(10181): 1642-1656. DOI: 10.1016/S0140-6736(19)30308-3.
|
[12] |
McQuaid CF, McCreesh N, Read JM, et al. The potential impact of COVID-19-related disruption on tuberculosis burden[J]. Eur Respir J, 2020, 56(2): 2001718. DOI: 10.1183/13993003.01718-2020.
|
[13] |
Silva S, Arinaminpathy N, Atun R, et al. Economic impact of tuberculosis mortality in 120 countries and the cost of not achieving the Sustainable Development Goals tuberculosis targets: a full-income analysis[J]. Lancet Glob Health, 2021, 9(10): e1372-e1379. DOI: 10.1016/S2214-109X(21)00299-0.
|
[14] |
Ravimohan S, Kornfeld H, Weissman D, et al. Tuberculosis and lung damage: from epidemiology to pathophysiology[J]. Eur Respir Rev, 2018, 27(147)170077. DOI: 10.1183/16000617.0077-2017.
|
[15] |
Goossens SN, Sampson SL, Van Rie A. Mechanisms of drug-Induced tolerance in Mycobacterium tuberculosis[J]. Clin Microbiol Rev, 2020, 34(1): e00141-e00161. DOI: 10.1128/CMR.00141-20.
|
[16] |
Xu W, Snell LM, Guo M, et al. Early innate and adaptive immune perturbations determine long-term severity of chronic virus and Mycobacterium tuberculosis coinfection[J]. Immunity, 2021, 54(3): 526-541. DOI: 10.1016/j.immuni.2021.01.003.
|
[17] |
McCaffrey EF, Donato M, Keren L, et al. The immunoregulatory landscape of human tuberculosis granulomas[J]. Nat Immunol, 2022, 23(2): 318-329. DOI: 10.1038/s41590-021-01121-x.
|
[18] |
Sharan R, Bucşan AN, Ganatra S, et al. Chronic immune activation in TB/HIV co-infection: (trends in microbiology 28, 619-632; 2020)[J]. Trends Microbiol, 2020, 28(8): 699. DOI: 10.1016/j.tim.2020.05.006.
|
[19] |
Seto S, Tsujimura K, Koide Y. Coronin-1a inhibits autophagosome formation around Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages[J]. Cell Microbiol, 2012, 14(5): 710-727. DOI: 10.1111/j.1462-5822.2012.01754.x.
|
[20] |
Wang L, Wu J, Li J, et al. Host-mediated ubiquitination of a mycobacterial protein suppresses immunity[J]. Nature, 2020, 577(7792): 682-688. DOI: 10.1038/s41586-019-1915-7.
|
[21] |
Khan N, Downey J, Sanz J, et al. M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity[J]. Cell, 2020, 183(3): 752-770. DOI: 10.1016/j.cell.2020.09.062.
|
[22] |
Roy Chowdhury R, Vallania F, Yang QT, et al. A multi-cohort study of the immune factors associated with M. tuberculosis infection outcomes[J]. Nature, 2018, 560(7720): 644-648. DOI: 10.1038/s41586-018-0439-x.
|
[23] |
Joosten SA, van Meijgaarden KE, del Nonno F, et al. Patients with tuberculosis have a dysfunctional circulating b-cell compartment, which normalizes following successful treatment[J]. PLoS Pathog, 2016, 12(6): e1005687. DOI: 10.1371/journal.ppat.1005687.
|
[24] |
CDC. Interim clinical considerations for use of COVID-19 vaccines currently approved or authorized in the United States[EB/OL]. (2022-03-07)[2022-03-29]. https://www.cdc.gov/vaccines/covid-19/clinical-considerations/interim-considerations-us.html#special-populations.
|
[25] |
国家卫生健康委员会疾病预防控制局. 新冠病毒疫苗接种技术指南(第一版)[J]. 中国病毒病杂志, 2021, 11(3): 161-162. DOI: 10.16505/j.2095-0136.2021.0018.
Bureau of Disease Control and Prevention, National Health Commission of the People's Republic of China. Guidelines of vaccination for COVID-19 vaccines in China (First edition)[J]. Chin J Viral Dis, 2021, 11(3): 161-162. DOI: 10.16505/j.2095-0136.2021.0018.
|
[26] |
曹玮. 慢性肝病、结核病和风湿免疫病患者接种新冠疫苗的专家建议[J]. 中华医学信息导报, 2021, 36(15): 6. DOI: 10.3760/cma.j.issn.1000-8039.2021.15.107.
Cao W. Expert recommendation on severe acute respiratory syndrome coronavirus 2 vaccination in patients with chronic liver diseases, tuberculosis or rheumatoid diseases[J]. Chin Med News, 2021, 36(15): 6. DOI: 10.3760/cma.j.issn.1000-8039.2021.15.107.
|
[27] |
殷荣, 钮蕴超, 缪晓辉. 《特殊人群(慢性肝病、结核病和风湿免疫病患者)新型冠状病毒疫苗接种专家建议》解读[J]. 中华传染病杂志, 2021, 39(10): 588-590. DOI: 10.3760/cma.j.cn311365-20210623-00222.
Yin R, Niu YC, Miu XH. Interpretation of "Expert recommendation on severe acute respiratory syndrome coronavirus 2 vaccination in patients with chronic liver diseases, tuberculosis or rheumatoid diseases"[J]. Chin J Infect Dis, 2021, 39(10): 588-590. DOI: 10.3760/cma.j.cn311365-20210623-00222.
|
[28] |
卢水华, 夏露. 结核病患者接种新型冠状病毒疫苗的专家建议[J]. 中国防痨杂志, 2021, 43(12): 1239-1242. DOI: 10.3969/j.issn.1000-6621.2021.12.003.
Lu SH, Xia L. Expert advice on anti-novel coronavirus vaccination for tuberculosis patients[J]. Chin J Antituberc, 2021, 43(12): 1239-1242. DOI: 10.3969/j.issn.1000-6621.2021.12.003.
|
[29] |
Akiyama S, Hamdeh S, Micic D, et al. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis[J]. Ann Rheum Dis, 2021, 80(3): 384-391. DOI: 10.1136/annrheumdis-2020-218946.
|
[30] |
Medeiros-Ribeiro AC, Aikawa NE, Saad CGS, et al. Immunogenicity and safety of the CoronaVac inactivated vaccine in patients with autoimmune rheumatic diseases: a phase 4 trial[J]. Nat Med, 2021, 27(10): 1744-1751. DOI: 10.1038/s41591-021-01469-5.
|
[31] |
Furer V, Eviatar T, Zisman D, et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study[J]. Ann Rheum Dis, 2021, 80(10): 1330-1338. DOI: 10.1136/annrheumdis-2021-220647.
|
[32] |
Geisen UM, Berner DK, Tran F, et al. Immunogenicity and safety of anti-SARS-CoV-2 mRNA vaccines in patients with chronic inflammatory conditions and immunosuppressive therapy in a monocentric cohort[J]. Ann Rheum Dis, 2021, 80(10): 1306-1311. DOI: 10.1136/annrheumdis-2021-220272.
|
[33] |
Frater J, Ewer KJ, Ogbe A, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase 2/3 clinical trial[J]. Lancet HIV, 2021, 8(8): e474-e485. DOI: 10.1016/S2352-3018(21)00103-X.
|
[34] |
Madhi SA, Koen AL, Izu A, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase 1B/2A trial[J]. Lancet HIV, 2021, 8(9): e568-e580. DOI: 10.1016/S2352-3018(21)00157-0.
|
[35] |
Shroff RT, Chalasani P, Wei R, et al. Immune responses to two and three doses of the BNT162b2 mRNA vaccine in adults with solid tumors[J]. Nat Med, 2021, 27(11): 2002-2011. DOI: 10.1038/s41591-021-01542-z.
|
[36] |
Waldhorn I, Holland R, Goshen-Lago T, et al. Six-month efficacy and toxicity profile of BNT162b2 vaccine in cancer patients with solid tumors[J]. Cancer Discov, 2021, 11(10): 2430-2435. DOI: 10.1158/2159-8290.CD-21-1072.
|
[37] |
Oosting SF, van der Veldt AAM, GeurtsvanKessel CH, et al. mRNA-1273 COVID-19 vaccination in patients receiving chemotherapy, immunotherapy, or chemoimmunotherapy for solid tumours: a prospective, multicentre, non-inferiority trial[J]. Lancet Oncol, 2021, 22(12): 1681-1691. DOI: 10.1016/S1470-2045(21)00574-X.
|
[38] |
Lee A, Wong SY, Chai LYA, et al. Efficacy of covid-19 vaccines in immunocompromised patients: systematic review and meta-analysis[J]. BMJ, 2022, 376: e068632. DOI: 10.1136/bmj-2021-068632.
|