Citation: | HE Na-na, ZHAO Hang, SUN Jin-fang, YU Xiao-jin. Trend analysis of COVID-19 incidence and death series based on Bayesian change point model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(12): 1402-1406. doi: 10.16462/j.cnki.zhjbkz.2022.12.007 |
[1] |
World Health Organization. WHO Coronavirus (COVID-19) Dashboard[EB/OL]. (2019-12-30)[2021-12-01]. https://covid19.who.int/table/.
|
[2] |
Wagner AK, Soumerai SB, Zhang F, et al. Segmented regression analysis of interrupted time series studies in medication use research[J]. J Clin Pharm Ther, 2002, 27(4): 299-309. DOI: 10.1046/j.1365-2710.2002.00430.x.
|
[3] |
张晗希, 韩孟杰, 周郁, 等. 应用中断时间序列分析我国"四免一关怀"政策实施前后对艾滋病相关病死率的影响[J]. 中华流行病学杂志, 2020, 41(3): 406-411. DOI: 10.3760/cma.j.issn.0254-6450.2020.03.024.
Zhang HX, Han MJ, Zhou Y, et al. Application of Interruption Time Series to Analyze the Impact of my country's "Four Frees and One Care" Policy on AIDS-related Mortality Rates Before and After Implementation[J]. Chin J Epidemiol, 2020, 41(3): 406-411. DOI: 10.3760/cma.j.issn.0254-6450.2020.03.024.
|
[4] |
Barry D, Hartigan JA. A Bayesian-analysis for change point problems[J]. J Am Stat Assoc, 1993, 88(421): 309-319. DOI: 10.1080/01621459.1993.10594323.
|
[5] |
Blankerl. 2019新型冠状病毒疫情时间序列数据仓库[EB/OL]. (2020-03-19)[2021-12-01]. https://github.com/BlankerL/DXY-COVID-19-Data.
BlankerL. Time series database of 2019 novel coronavirus epidemic[EB/OL]. (2020-03-19)[2021-12-01]. https://github.com/BlankerL/DXY-COVID-19-Data.
|
[6] |
Linden A. Conducting interrupted time-series analysis for single- and multiple-group comparisons[J]. Stata J, 2015, 15(2): 480-500. DOI: 10.1177/1536867×1501500208.
|
[7] |
沈卉卉. 自相关性的D-W检验与模型的改进[J]. 统计与决策, 2007, (23): 11-13. DOI: 10.3969/j.issn.1002-6487.2007.23.005.
Shen HH. D-W test of autocorrelation and improvement of model[J]. Statistics and decision-making, 2007, (23):11-13. DOI: 10.3969/j.issn.1002-6487.2007.23.005.DOI:10.3969/j.issn.1002-6487.2007.23.005.
|
[8] |
丁莹, 张健钦, 杨木, 等. 新冠疫情城市仿真模型及防控措施评价-以武汉市为例[J]. 清华大学学报(自然科学版), 1-10. DOI: 10.16511/j.cnki.qhdxxb.2020.25.043.
Ding Y, Zhang JQ, Yang M, et al. Communicable disease transmission model for the prevention and control of COVID-19 in Wuhan, China[J]. Journal of Tsinghua University (Natural Science Edition), 1-10. DOI: 10.16511/j.cnki.qhdxxb.2020.25.043.
|
[9] |
李伟炜, 杜蓉, 陈曙东, 等. 新型冠状病毒肺炎传播特性分析与疫情发展趋势预测[J]. 厦门大学学报(自然科学版), 2020, 59(6): 1025-1033. DOI: 10.6043/j.issn.0438-0479.202005016.
Li WW, Du R, Chen SD, et al. Analysis of transmission characteristic of COVID-19 and prediction of the development trend of epidemic situation[J]. J Xiamen Univ (Nat Sci), 2020, 59(6): 1025-1033. DOI: 10.6043/j.issn.0438-0479.202005016.
|
[10] |
杨瑛莹, 詹思怡, 姜棋竞, 等. 中国258个城市新型冠状病毒肺炎时空分布特征研究[J]. 疾病监测, 2020, 35(11): 977-981. DOI: 10.3784/j.issn.1003-9961.2020.11.005.
Yang YY, Zhan SY, Jiang JQ, et al. Spatiotemporal characteristics of coronavirus disease 2019 in 258 Cities in China[J]. Dis Surveill, 2020, 35(11): 977-981. DOI: 10.3784/j.issn.1003-9961.2020.11.005.
|
[11] |
Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus[J]. Science, 2020, 368(6489): 395-400. DOI: 10.1126/science.aba9757.
|
[12] |
喻孜, 张贵清, 刘庆珍, 等. 基于时变参数-SIR模型的COVID-19疫情评估和预测[J]. 电子科技大学学报, 2020, 49(3): 357-361. DOI: 10.12178/1001-0548.2020027.
Yu Z, Zhang GQ, Liu QZ, et al. The outbreak assessment and prediction of COVID-19 based on time-varying SIR model[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 357-361. DOI: 10.12178/1001-0548.2020027.
|
[13] |
王帮璇, 元永艇, 张丽, 等. 新型冠状病毒肺炎死亡病例变化趋势及其从发病到死亡时间的特征分析[J]. 蚌埠医学院学报, 2020, 45(2): 141-147. DOI: 10.13898/j.cnki.issn.1000-2200.2020.02.001.
Wang BX, Yuan YT, Zhang L, et al. Trend of death cases of corona virus disease 2019 and its characteristic analysis from onset to death[J]. J Bengbu Med Coll, 2020, 45(2): 141-147. DOI: 10.13898/j.cnki.issn.1000-2200.2020.02.001.
|
[14] |
Lipa J, Ma R, Cho YH. Change-Point Analysis: R and SAS Tutorial[EB/OL]. (2017-12-16)[2021-12-01]. https://jbhendergithubio/Stats506/F17/Projects/change_point.html.
|
[15] |
Cheng VC, Tai JW, Chau PH, et al. Minimal intervention for controlling nosocomial transmission of methicillin-resistant staphylococcus aureus in resource limited setting with high endemicity[J]. PLoS One, 2014, 9(6): e100493. DOI: 10.1371/journal.pone.0100493.
|
[16] |
Ver Hoef JM, Boveng PL. Quasi-Poisson vs. negative binomial regression: how should we model overdispersed[J]. Ecology, 2007, 88(11): 2766-2772. DOI: 10.1890/07-0043.1.
|
[17] |
Gasparrini A, Gorini G, Barchielli A. On the relationship between smoking bans and incidence of acute myocardial[J]. Eur J Epidemiol, 2009, 24(10): 597-602. DOI: 10.1007/s10654-009-9377-0.
|