Advanced Search

CN 34-1304/RISSN 1674-3679

Volume 26 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
HE Na-na, ZHAO Hang, SUN Jin-fang, YU Xiao-jin. Trend analysis of COVID-19 incidence and death series based on Bayesian change point model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(12): 1402-1406. doi: 10.16462/j.cnki.zhjbkz.2022.12.007
Citation: HE Na-na, ZHAO Hang, SUN Jin-fang, YU Xiao-jin. Trend analysis of COVID-19 incidence and death series based on Bayesian change point model[J]. CHINESE JOURNAL OF DISEASE CONTROL & PREVENTION, 2022, 26(12): 1402-1406. doi: 10.16462/j.cnki.zhjbkz.2022.12.007

Trend analysis of COVID-19 incidence and death series based on Bayesian change point model

doi: 10.16462/j.cnki.zhjbkz.2022.12.007
Funds:

Postgraduate Research & Practice Innovation Program of Jiangsu Province SJCX20_0064

The Fundamental Research Funds for the Central Universities 3225002110D

More Information
  • Corresponding author: YU Xiao-jin, E-mail: xiaojinyu@seu.edu.cn
  • Received Date: 2022-01-20
  • Rev Recd Date: 2022-04-20
  • Available Online: 2022-12-30
  • Publish Date: 2022-12-10
  •   Objective  To analyze the trend of COVID-19 based on the trend analysis of incidence and mortality data and provide analysis strategies for similar epidemiological researches.  Methods  We used the Bayesian change point analysis model to obtain the time series change points based on the number of cumulative confirmed and cumulative death cases of COVID-19 from January 23, 2020 to March 18, 2020 in Chinese mainland. Interrupted time series (ITS) method was applied to build a segmented linear regression (SLR) model, evaluating the consistency of trends in the series with the intervention or policy.  Results  There were 3 change points in cumulative confirmed cases and deaths in Wuhan, and 4 change points in cumulative confirmed cases and deaths in Hubei Province (except Wuhan) and Chinese mainland (except Hubei Province). The changes in the number of cumulative confirmed cases in Wuhan after 3 change points were 1 493.885 (P < 0.001), 2 444.913 (P < 0.001) and -4 061.038 (P < 0.001), respectively. The number of cumulative deaths after the second and third change points were -66.917 (P < 0.001) and -19.845 (P=0.034), respectively. The increase in the number of cumulative confirmed cases in Hubei Province (except Wuhan) began to decrease after the third change point, and the change is -845.244 (P < 0.001). The the increase in the number of cumulative deaths decreased after the third and fourth change points, and the slope changes were -10.062 (P < 0.001) and -12.245 (P < 0.001), respectively. The increase in the number of cumulative confirmed cases in Chinese mainland decreased from the second change point, and the changes were -281.494 (P < 0.001), -295.080 (P < 0.001), -145.054 (P < 0.001), respectively. The statistically significant decrease in the increase of cumulative deaths appeared in the third and fourth change points, and the slope changes were -3.199 (P < 0.001) and -1.706 (P < 0.001), respectively.  Conclusions  The combination of interrupted time series analysis with Bayesian change point analysis can consider the uncertainty of time series trend changes, and provide a basis for epidemiological analysis of infectious diseases and evaluation of prevention and control measures.
  • loading
  • [1]
    World Health Organization. WHO Coronavirus (COVID-19) Dashboard[EB/OL]. (2019-12-30)[2021-12-01]. https://covid19.who.int/table/.
    [2]
    Wagner AK, Soumerai SB, Zhang F, et al. Segmented regression analysis of interrupted time series studies in medication use research[J]. J Clin Pharm Ther, 2002, 27(4): 299-309. DOI: 10.1046/j.1365-2710.2002.00430.x.
    [3]
    张晗希, 韩孟杰, 周郁, 等. 应用中断时间序列分析我国"四免一关怀"政策实施前后对艾滋病相关病死率的影响[J]. 中华流行病学杂志, 2020, 41(3): 406-411. DOI: 10.3760/cma.j.issn.0254-6450.2020.03.024.

    Zhang HX, Han MJ, Zhou Y, et al. Application of Interruption Time Series to Analyze the Impact of my country's "Four Frees and One Care" Policy on AIDS-related Mortality Rates Before and After Implementation[J]. Chin J Epidemiol, 2020, 41(3): 406-411. DOI: 10.3760/cma.j.issn.0254-6450.2020.03.024.
    [4]
    Barry D, Hartigan JA. A Bayesian-analysis for change point problems[J]. J Am Stat Assoc, 1993, 88(421): 309-319. DOI: 10.1080/01621459.1993.10594323.
    [5]
    Blankerl. 2019新型冠状病毒疫情时间序列数据仓库[EB/OL]. (2020-03-19)[2021-12-01]. https://github.com/BlankerL/DXY-COVID-19-Data.

    BlankerL. Time series database of 2019 novel coronavirus epidemic[EB/OL]. (2020-03-19)[2021-12-01]. https://github.com/BlankerL/DXY-COVID-19-Data.
    [6]
    Linden A. Conducting interrupted time-series analysis for single- and multiple-group comparisons[J]. Stata J, 2015, 15(2): 480-500. DOI: 10.1177/1536867×1501500208.
    [7]
    沈卉卉. 自相关性的D-W检验与模型的改进[J]. 统计与决策, 2007, (23): 11-13. DOI: 10.3969/j.issn.1002-6487.2007.23.005.

    Shen HH. D-W test of autocorrelation and improvement of model[J]. Statistics and decision-making, 2007, (23):11-13. DOI: 10.3969/j.issn.1002-6487.2007.23.005.DOI:10.3969/j.issn.1002-6487.2007.23.005.
    [8]
    丁莹, 张健钦, 杨木, 等. 新冠疫情城市仿真模型及防控措施评价-以武汉市为例[J]. 清华大学学报(自然科学版), 1-10. DOI: 10.16511/j.cnki.qhdxxb.2020.25.043.

    Ding Y, Zhang JQ, Yang M, et al. Communicable disease transmission model for the prevention and control of COVID-19 in Wuhan, China[J]. Journal of Tsinghua University (Natural Science Edition), 1-10. DOI: 10.16511/j.cnki.qhdxxb.2020.25.043.
    [9]
    李伟炜, 杜蓉, 陈曙东, 等. 新型冠状病毒肺炎传播特性分析与疫情发展趋势预测[J]. 厦门大学学报(自然科学版), 2020, 59(6): 1025-1033. DOI: 10.6043/j.issn.0438-0479.202005016.

    Li WW, Du R, Chen SD, et al. Analysis of transmission characteristic of COVID-19 and prediction of the development trend of epidemic situation[J]. J Xiamen Univ (Nat Sci), 2020, 59(6): 1025-1033. DOI: 10.6043/j.issn.0438-0479.202005016.
    [10]
    杨瑛莹, 詹思怡, 姜棋竞, 等. 中国258个城市新型冠状病毒肺炎时空分布特征研究[J]. 疾病监测, 2020, 35(11): 977-981. DOI: 10.3784/j.issn.1003-9961.2020.11.005.

    Yang YY, Zhan SY, Jiang JQ, et al. Spatiotemporal characteristics of coronavirus disease 2019 in 258 Cities in China[J]. Dis Surveill, 2020, 35(11): 977-981. DOI: 10.3784/j.issn.1003-9961.2020.11.005.
    [11]
    Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus[J]. Science, 2020, 368(6489): 395-400. DOI: 10.1126/science.aba9757.
    [12]
    喻孜, 张贵清, 刘庆珍, 等. 基于时变参数-SIR模型的COVID-19疫情评估和预测[J]. 电子科技大学学报, 2020, 49(3): 357-361. DOI: 10.12178/1001-0548.2020027.

    Yu Z, Zhang GQ, Liu QZ, et al. The outbreak assessment and prediction of COVID-19 based on time-varying SIR model[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 357-361. DOI: 10.12178/1001-0548.2020027.
    [13]
    王帮璇, 元永艇, 张丽, 等. 新型冠状病毒肺炎死亡病例变化趋势及其从发病到死亡时间的特征分析[J]. 蚌埠医学院学报, 2020, 45(2): 141-147. DOI: 10.13898/j.cnki.issn.1000-2200.2020.02.001.

    Wang BX, Yuan YT, Zhang L, et al. Trend of death cases of corona virus disease 2019 and its characteristic analysis from onset to death[J]. J Bengbu Med Coll, 2020, 45(2): 141-147. DOI: 10.13898/j.cnki.issn.1000-2200.2020.02.001.
    [14]
    Lipa J, Ma R, Cho YH. Change-Point Analysis: R and SAS Tutorial[EB/OL]. (2017-12-16)[2021-12-01]. https://jbhendergithubio/Stats506/F17/Projects/change_point.html.
    [15]
    Cheng VC, Tai JW, Chau PH, et al. Minimal intervention for controlling nosocomial transmission of methicillin-resistant staphylococcus aureus in resource limited setting with high endemicity[J]. PLoS One, 2014, 9(6): e100493. DOI: 10.1371/journal.pone.0100493.
    [16]
    Ver Hoef JM, Boveng PL. Quasi-Poisson vs. negative binomial regression: how should we model overdispersed[J]. Ecology, 2007, 88(11): 2766-2772. DOI: 10.1890/07-0043.1.
    [17]
    Gasparrini A, Gorini G, Barchielli A. On the relationship between smoking bans and incidence of acute myocardial[J]. Eur J Epidemiol, 2009, 24(10): 597-602. DOI: 10.1007/s10654-009-9377-0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (588) PDF downloads(151) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return